Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 26799 by 803jaideep@gmail.com last updated on 29/Dec/17

Answered by mrW1 last updated on 29/Dec/17

I=∫d^2 dm  dm=ρdV=ρrdrdθdz  d^2 =z^2 +(rcos θ)^2 =z^2 +r^2 cos^2  θ  I=∫_(−(L/2)) ^( (L/2)) ∫_0 ^( 2π) ∫_0 ^( R) (z^2 +r^2 cos^2  θ)ρrdrdθdz  =2ρ∫_0 ^( (L/2)) ∫_0 ^( 2π) ∫_0 ^( R) (z^2 +r^2 cos^2  θ)rdrdθdz  =2ρ∫_0 ^( (L/2)) ∫_0 ^( 2π) (z^2 ×(R^2 /2)+(R^4 /4)cos^2  θ)dθdz  =((ρR^2 )/2)∫_0 ^( (L/2)) ∫_0 ^( 2π) (2z^2 +R^2 cos^2  θ)dθdz  =((ρR^2 )/2)∫_0 ^( (L/2)) ∫_0 ^( 2π) (2z^2 +(R^2 /2)+(R^2 /2)cos 2θ)dθdz  =((ρR^2 )/2)∫_0 ^( (L/2)) (2z^2 +(R^2 /2))2πdz  =πρR^2 ∫_0 ^( (L/2)) (2z^2 +(R^2 /2))dz  =πρR^2 [(2/3)((L/2))^3 +(R^2 /2)×(L/2)]  =πρR^2 L×(1/(12))(L^2 +3R^2 )  =(M/(12))(L^2 +3R^2 )

I=d2dmdm=ρdV=ρrdrdθdzd2=z2+(rcosθ)2=z2+r2cos2θI=L2L202π0R(z2+r2cos2θ)ρrdrdθdz=2ρ0L202π0R(z2+r2cos2θ)rdrdθdz=2ρ0L202π(z2×R22+R44cos2θ)dθdz=ρR220L202π(2z2+R2cos2θ)dθdz=ρR220L202π(2z2+R22+R22cos2θ)dθdz=ρR220L2(2z2+R22)2πdz=πρR20L2(2z2+R22)dz=πρR2[23(L2)3+R22×L2]=πρR2L×112(L2+3R2)=M12(L2+3R2)

Commented by mrW1 last updated on 29/Dec/17

Commented by 803jaideep@gmail.com last updated on 30/Dec/17

wow thanks a lot

wowthanksalot

Terms of Service

Privacy Policy

Contact: info@tinkutara.com