Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 26837 by sorour87 last updated on 30/Dec/17

xy^((2)) =y^((1)) ×ln (y^((1)) /x)

$${xy}^{\left(\mathrm{2}\right)} ={y}^{\left(\mathrm{1}\right)} ×\mathrm{ln}\:\frac{{y}^{\left(\mathrm{1}\right)} }{{x}} \\ $$

Answered by prakash jain last updated on 30/Dec/17

y′=u(x)  y′′=u′(x)  xu′=uln (u/x)  v=(u/x)⇒u=vx  u′=xv′+v  x(xv′+v)=xvln v  xv′+v=vln v  x(dv/dx)=vln v−v⇒(dv/(vln v−v))=(dx/x)  Equation be solved in v and then u  and y from this point.

$${y}'={u}\left({x}\right) \\ $$$${y}''={u}'\left({x}\right) \\ $$$${xu}'={u}\mathrm{ln}\:\frac{{u}}{{x}} \\ $$$${v}=\frac{{u}}{{x}}\Rightarrow{u}={vx} \\ $$$${u}'={xv}'+{v} \\ $$$${x}\left({xv}'+{v}\right)={xv}\mathrm{ln}\:{v} \\ $$$${xv}'+{v}={v}\mathrm{ln}\:{v} \\ $$$${x}\frac{{dv}}{{dx}}={v}\mathrm{ln}\:{v}−{v}\Rightarrow\frac{{dv}}{{v}\mathrm{ln}\:{v}−{v}}=\frac{{dx}}{{x}} \\ $$$$\mathrm{Equation}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{in}\:{v}\:\mathrm{and}\:\mathrm{then}\:{u} \\ $$$$\mathrm{and}\:{y}\:\mathrm{from}\:\mathrm{this}\:\mathrm{point}. \\ $$

Commented by sorour87 last updated on 30/Dec/17

pleas solve it to the end. my problem is in it.  thanks

$${pleas}\:{solve}\:{it}\:{to}\:{the}\:{end}.\:{my}\:{problem}\:{is}\:{in}\:{it}. \\ $$$${thanks} \\ $$

Commented by prakash jain last updated on 30/Dec/17

(dv/(vln v−v))=(dx/x)  ⇒(dv/(v(ln v−1)))=(dx/x)       ln v−1=w⇒(1/v)dv=dw  ln (ln v−1)=ln x+ln c =ln xc       for simplicity we are writng c as lnc  ln v−1=xc  v=e^(xc+1)   u=xv=xe^(xc+1)   (dy/dx)=xe^(xc+1) =exe^(xc)   dy=exe^(xc) dx  y=ex(e^(xc) /c)−∫e(e^(xc) /c)dx  y=ex(e^(xc) /c)−e(e^(xc) /c^2 )+c_1   y=((cxe^(xc+1) −e^(xc+1) +c_1 c^2 )/c^2 )  c and c_1  are arbitrary constant.

$$\frac{{dv}}{{v}\mathrm{ln}\:{v}−{v}}=\frac{{dx}}{{x}} \\ $$$$\Rightarrow\frac{{dv}}{{v}\left(\mathrm{ln}\:{v}−\mathrm{1}\right)}=\frac{{dx}}{{x}} \\ $$$$\:\:\:\:\:\mathrm{ln}\:{v}−\mathrm{1}={w}\Rightarrow\frac{\mathrm{1}}{{v}}{dv}={dw} \\ $$$$\mathrm{ln}\:\left(\mathrm{ln}\:{v}−\mathrm{1}\right)=\mathrm{ln}\:{x}+\mathrm{ln}\:{c}\:=\mathrm{ln}\:{xc} \\ $$$$\:\:\:\:\:{for}\:{simplicity}\:{we}\:{are}\:{writng}\:{c}\:{as}\:{lnc} \\ $$$$\mathrm{ln}\:{v}−\mathrm{1}={xc} \\ $$$${v}={e}^{{xc}+\mathrm{1}} \\ $$$${u}={xv}={xe}^{{xc}+\mathrm{1}} \\ $$$$\frac{{dy}}{{dx}}={xe}^{{xc}+\mathrm{1}} ={exe}^{{xc}} \\ $$$${dy}={exe}^{{xc}} {dx} \\ $$$${y}={ex}\frac{{e}^{{xc}} }{{c}}−\int{e}\frac{{e}^{{xc}} }{{c}}{dx} \\ $$$${y}={ex}\frac{{e}^{{xc}} }{{c}}−{e}\frac{{e}^{{xc}} }{{c}^{\mathrm{2}} }+{c}_{\mathrm{1}} \\ $$$${y}=\frac{{cxe}^{{xc}+\mathrm{1}} −{e}^{{xc}+\mathrm{1}} +{c}_{\mathrm{1}} {c}^{\mathrm{2}} }{{c}^{\mathrm{2}} } \\ $$$${c}\:{and}\:{c}_{\mathrm{1}} \:\mathrm{are}\:\mathrm{arbitrary}\:\mathrm{constant}. \\ $$

Commented by sorour87 last updated on 30/Dec/17

thank you very much

$$\boldsymbol{{thank}}\:\boldsymbol{{you}}\:\boldsymbol{{very}}\:\boldsymbol{{much}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com