Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 26853 by ajfour last updated on 30/Dec/17

Commented by ajfour last updated on 30/Dec/17

Find area of the blue region.

$${Find}\:{area}\:{of}\:{the}\:{blue}\:{region}. \\ $$

Answered by mrW1 last updated on 30/Dec/17

Commented by mrW1 last updated on 31/Dec/17

D(1,1)  x_C =1  y_C =(1/a)  x_B =(a/2)  y_B =(1/2)  x_A =y_A   (x_A /1)=((a−x_A )/a)  ⇒x_A =(a/(1+a))=y_A   A_(ABCD) =(1/2)(1−(a/(1+a)))(1+(a/(1+a)))−(1/2)((a/2)−(a/(1+a)))((1/2)+(a/(1+a)))−(1/2)(1−(a/2))((1/2)+(1/a))  A_(Hexagon) =2×A_(ABCD) =(1−(a/(1+a)))(1+(a/(1+a)))−((a/2)−(a/(1+a)))((1/2)+(a/(1+a)))−(1−(a/2))((1/2)+(1/a))  =((1+2a)/((1+a)^2 ))−((a(a−1)(1+3a))/(4(1+a)^2 ))−(((2−a)(2+a))/(4a))  =((4(1+2a)−a(a−1)(1+3a))/(4(1+a)^2 ))−(1/a)+(a/4)  =((4+3a^3 +2a^2 +9a)/(4(1+a)^2 ))−(1/a)+(a/4)  ......

$${D}\left(\mathrm{1},\mathrm{1}\right) \\ $$$${x}_{{C}} =\mathrm{1} \\ $$$${y}_{{C}} =\frac{\mathrm{1}}{{a}} \\ $$$${x}_{{B}} =\frac{{a}}{\mathrm{2}} \\ $$$${y}_{{B}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}_{{A}} ={y}_{{A}} \\ $$$$\frac{{x}_{{A}} }{\mathrm{1}}=\frac{{a}−{x}_{{A}} }{{a}} \\ $$$$\Rightarrow{x}_{{A}} =\frac{{a}}{\mathrm{1}+{a}}={y}_{{A}} \\ $$$${A}_{{ABCD}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{{a}}{\mathrm{1}+{a}}\right)\left(\mathrm{1}+\frac{{a}}{\mathrm{1}+{a}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{a}}{\mathrm{2}}−\frac{{a}}{\mathrm{1}+{a}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{a}}{\mathrm{1}+{a}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{{a}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{{a}}\right) \\ $$$${A}_{{Hexagon}} =\mathrm{2}×{A}_{{ABCD}} =\left(\mathrm{1}−\frac{{a}}{\mathrm{1}+{a}}\right)\left(\mathrm{1}+\frac{{a}}{\mathrm{1}+{a}}\right)−\left(\frac{{a}}{\mathrm{2}}−\frac{{a}}{\mathrm{1}+{a}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{a}}{\mathrm{1}+{a}}\right)−\left(\mathrm{1}−\frac{{a}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{{a}}\right) \\ $$$$=\frac{\mathrm{1}+\mathrm{2}{a}}{\left(\mathrm{1}+{a}\right)^{\mathrm{2}} }−\frac{{a}\left({a}−\mathrm{1}\right)\left(\mathrm{1}+\mathrm{3}{a}\right)}{\mathrm{4}\left(\mathrm{1}+{a}\right)^{\mathrm{2}} }−\frac{\left(\mathrm{2}−{a}\right)\left(\mathrm{2}+{a}\right)}{\mathrm{4}{a}} \\ $$$$=\frac{\mathrm{4}\left(\mathrm{1}+\mathrm{2}{a}\right)−{a}\left({a}−\mathrm{1}\right)\left(\mathrm{1}+\mathrm{3}{a}\right)}{\mathrm{4}\left(\mathrm{1}+{a}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{{a}}+\frac{{a}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{4}+\mathrm{3}{a}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{2}} +\mathrm{9}{a}}{\mathrm{4}\left(\mathrm{1}+{a}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{{a}}+\frac{{a}}{\mathrm{4}} \\ $$$$...... \\ $$

Commented by ajfour last updated on 31/Dec/17

thank you Sir, quite enlightening  for me.

$${thank}\:{you}\:{Sir},\:{quite}\:{enlightening} \\ $$$${for}\:{me}. \\ $$

Commented by mrW1 last updated on 31/Dec/17

Commented by ajfour last updated on 31/Dec/17

in last line  you should have −3a^3    instead of 3a^3 .  From your 4^(th)  last line Sir,  if i expand :   A_(hexa) =1−((a/(1+a)))^2 −(a/4)−(a^2 /(2(1+a)))       +(a/(2(1+a)))+((a/(1+a)))^2 −(1/2)−(1/a)      +(a/4)+(1/2)    A_(hexa)  =1−((a(a−1))/(2(1+a)))−(1/a) .  short enough .

$${in}\:{last}\:{line}\:\:{you}\:{should}\:{have}\:−\mathrm{3}{a}^{\mathrm{3}} \: \\ $$$${instead}\:{of}\:\mathrm{3}{a}^{\mathrm{3}} . \\ $$$${From}\:{your}\:\mathrm{4}^{{th}} \:{last}\:{line}\:{Sir}, \\ $$$${if}\:{i}\:{expand}\:: \\ $$$$\:{A}_{{hexa}} =\mathrm{1}−\left(\frac{{a}}{\mathrm{1}+{a}}\right)^{\mathrm{2}} −\frac{{a}}{\mathrm{4}}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{1}+{a}\right)} \\ $$$$\:\:\:\:\:+\frac{{a}}{\mathrm{2}\left(\mathrm{1}+{a}\right)}+\left(\frac{{a}}{\mathrm{1}+{a}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{{a}} \\ $$$$\:\:\:\:+\frac{{a}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:{A}_{{hexa}} \:=\mathrm{1}−\frac{{a}\left({a}−\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{1}+{a}\right)}−\frac{\mathrm{1}}{{a}}\:. \\ $$$${short}\:{enough}\:. \\ $$

Commented by ajfour last updated on 31/Dec/17

A_(hexagon) =2[Ar(△OCD)−Ar(△OAB)  =2[(1/2)−(1/(2a))−(1/2) determinant (((a/(1+a)),(a/(1+a)),1),((a/2),(1/2),1),(0,0,1))]  =1−(1/a)−((a(a−1))/(2(1+a))) .

$${A}_{{hexagon}} =\mathrm{2}\left[{Ar}\left(\bigtriangleup{OCD}\right)−{Ar}\left(\bigtriangleup{OAB}\right)\right. \\ $$$$=\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}{a}}−\frac{\mathrm{1}}{\mathrm{2}}\begin{vmatrix}{\frac{{a}}{\mathrm{1}+{a}}}&{\frac{{a}}{\mathrm{1}+{a}}}&{\mathrm{1}}\\{\frac{{a}}{\mathrm{2}}}&{\frac{\mathrm{1}}{\mathrm{2}}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{vmatrix}\right] \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{{a}}−\frac{{a}\left({a}−\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{1}+{a}\right)}\:. \\ $$

Commented by mrW1 last updated on 31/Dec/17

GreaT!

$$\mathcal{G}{rea}\mathcal{T}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com