Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 26858 by $@ty@m last updated on 30/Dec/17

Prove that the internal bisector of an angle   of a triangle divides the opposite  sides in the ratio of the sides containing  the angle.

Provethattheinternalbisectorofanangleofatriangledividestheoppositesidesintheratioofthesidescontainingtheangle.

Answered by mrW1 last updated on 30/Dec/17

Commented by mrW1 last updated on 30/Dec/17

((BD)/(sin ∠BAD))=((AB)/(sin ∠ADB))  ⇒((BD)/(sin α))=((AB)/(sin β))  ⇒((BD)/(AB))=((sin α)/(sin β))    ((DC)/(sin ∠DAC))=((AC)/(sin ∠ADC))  ⇒((DC)/(sin α))=((AC)/(sin (180−β)))=((AC)/(sin β))  ⇒((DC)/(AC))=((sin α)/(sin β))    ⇒((BD)/(AB))=((DC)/(AC)) or ((BD)/(DC))=((AB)/(AC))

BDsinBAD=ABsinADBBDsinα=ABsinβBDAB=sinαsinβDCsinDAC=ACsinADCDCsinα=ACsin(180β)=ACsinβDCAC=sinαsinβBDAB=DCACorBDDC=ABAC

Commented by $@ty@m last updated on 31/Dec/17

Thanks...

Thanks...

Answered by mrW1 last updated on 31/Dec/17

Commented by mrW1 last updated on 31/Dec/17

An other easier way:  ((BD)/(DC))=((BE)/(FC))=((AB)/(AC))

Anothereasierway:BDDC=BEFC=ABAC

Terms of Service

Privacy Policy

Contact: info@tinkutara.com