Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 26941 by Mr eaay last updated on 31/Dec/17

show that the rectangular solid  of   naximum volume that can be inscribed  into a sphere is a cube

$${show}\:{that}\:{the}\:{rectangular}\:{solid}\:\:{of}\: \\ $$$${naximum}\:{volume}\:{that}\:{can}\:{be}\:{inscribed} \\ $$$${into}\:{a}\:{sphere}\:{is}\:{a}\:{cube} \\ $$

Answered by mrW1 last updated on 01/Jan/18

x^2 +y^2 +z^2 =R^2   we consider only the part in the  first octant.  V=xyz=xy(√(R^2 −x^2 −y^2 ))  (∂V/∂x)=y(√(R^2 −x^2 −y^2 ))−((x^2 y)/(√(R^2 −x^2 −y^2 )))=0  ⇒R^2 −x^2 −y^2 =x^2   ⇒2x^2 +y^2 =R^2     ...(i)  (∂V/∂y)=x(√(R^2 −x^2 −y^2 ))−((xy^2 )/(√(R^2 −x^2 −y^2 )))=0  ⇒R^2 −x^2 −y^2 =y^2   ⇒x^2 +2y^2 =R^2    ...(ii)  (i)+(ii):  3(x^2 +y^2 )=2R^2   x^2 +y^2 =(2/3)R^2    ...(iii)  (i)−(iii):  x^2 =(R^2 /3)  ⇒x=(R/(√3))  (ii)−(iii):  y^2 =(R^2 /3)  ⇒y=(R/(√3))  ⇒z=(√(R^2 −(R^2 /3)−(R^2 /3)))=(R/(√3))    ⇒solid with max. volume is a  cube with side length =((2R)/(√3)), the  volume is V_(max) =((8R^3 )/(3(√3))).

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${we}\:{consider}\:{only}\:{the}\:{part}\:{in}\:{the} \\ $$$${first}\:{octant}. \\ $$$${V}={xyz}={xy}\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\frac{\partial{V}}{\partial{x}}={y}\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }−\frac{{x}^{\mathrm{2}} {y}}{\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\Rightarrow{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={x}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:\:...\left({i}\right) \\ $$$$\frac{\partial{V}}{\partial{y}}={x}\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }−\frac{{xy}^{\mathrm{2}} }{\sqrt{{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\Rightarrow{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} ={y}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{2}{R}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}}{R}^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$$\left({i}\right)−\left({iii}\right): \\ $$$${x}^{\mathrm{2}} =\frac{{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow{x}=\frac{{R}}{\sqrt{\mathrm{3}}} \\ $$$$\left({ii}\right)−\left({iii}\right): \\ $$$${y}^{\mathrm{2}} =\frac{{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow{y}=\frac{{R}}{\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{z}=\sqrt{{R}^{\mathrm{2}} −\frac{{R}^{\mathrm{2}} }{\mathrm{3}}−\frac{{R}^{\mathrm{2}} }{\mathrm{3}}}=\frac{{R}}{\sqrt{\mathrm{3}}} \\ $$$$ \\ $$$$\Rightarrow{solid}\:{with}\:{max}.\:{volume}\:{is}\:{a} \\ $$$${cube}\:{with}\:{side}\:{length}\:=\frac{\mathrm{2}{R}}{\sqrt{\mathrm{3}}},\:{the} \\ $$$${volume}\:{is}\:{V}_{{max}} =\frac{\mathrm{8}{R}^{\mathrm{3}} }{\mathrm{3}\sqrt{\mathrm{3}}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com