Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 26999 by abdo imad last updated on 01/Jan/18

calculate Π_(k=1) ^n cos((a/2^k ))  and0<a<π  then find the value of  lim_(n−>∝)  Σ_(k=1) ^n ln(cos((a/2^k ))).

$${calculate}\:\prod_{{k}=\mathrm{1}} ^{{n}} {cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\:\:{and}\mathrm{0}<{a}<\pi\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$ $${lim}_{{n}−>\propto} \:\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left({cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\right). \\ $$

Answered by prakash jain last updated on 01/Jan/18

Π_(k=1) ^n cos((a/2^k ))   =(1/(sin ((a/2^n ))))sin ((a/2^n ))Π_(k=1) ^n cos((a/2^k ))   =((sin a)/(2^n sin ((a/2^n ))))  lim_(n→∞) ((sin a)/(2^n sin ((a/2^n ))))  lim_(n→∞) ((sin a)/(((sin ((a/2^n )))/(a/2^7 ))∙a))=((sin a)/a)

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\: \\ $$ $$=\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)}\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\: \\ $$ $$=\frac{\mathrm{sin}\:{a}}{\mathrm{2}^{{n}} \mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)} \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{sin}\:{a}}{\mathrm{2}^{{n}} \mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)} \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{sin}\:{a}}{\frac{\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)}{\frac{{a}}{\mathrm{2}^{\mathrm{7}} }}\centerdot{a}}=\frac{\mathrm{sin}\:{a}}{{a}} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com