Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27032 by cmaxamuud98 @gmail.com last updated on 01/Jan/18

xy=(1−x^2 )(dy/dx)    x=0 y=1

xy=(1x2)dydxx=0y=1

Commented by abdo imad last updated on 01/Jan/18

e.d⇒  (1−x^2 )y^′  −xy =0 with y(0)=1  ⇒ (y^′ /y) = (x/(1−x^2 ))  ⇒ln/y/=  ∫((xdx)/(1−x^2 ))  +λ  ln/y/= −(1/2) ln/1−x^2 /+λ  ⇒ y(x)= k  e^(−(1/2)ln/1−x^(2/) )   ⇒ y(x)=  (k/(√(/1−x^2 /)))  y(0)=1⇒ k=1  so y(x)=  (1/(√(/1−x^2 /))) .

e.d(1x2)yxy=0withy(0)=1yy=x1x2ln/y/=xdx1x2+λln/y/=12ln/1x2/+λy(x)=ke12ln/1x2/y(x)=k/1x2/y(0)=1k=1soy(x)=1/1x2/.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com