Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 27044 by Tinkutara last updated on 01/Jan/18

Answered by mrW1 last updated on 02/Jan/18

α=30°  x=u cos θ t  y=u sin θ t −((gt^2 )/2)  by landing:  y=x tan α=((x sin α)/(cos α))  t_1 =3.5 s  ⇒ut_1  sin θ−((gt_1 ^2 )/2)=((sin α)/(cos α))×ut_1  cos θ  ⇒sin θ−((gt_1 )/(2u))=((sin α)/(cos α)) cos θ  ⇒cos α sin θ−((gt_1  cos α)/(2u))=sin α cos θ  ⇒cos α sin θ−sin α cos θ=((gt_1  cos α)/(2u))  ⇒sin (θ− α)=((gt_1  cos α)/(2u))  ⇒θ= α+sin^(−1) (((gt_1  cos α)/(2u)))  ⇒θ= 30+sin^(−1) (((10×3.5×cos 30°)/(2×53)))=46.62°    at t=2 s:  u_x (t)=u cos θ  u_y (t)=u sin θ−gt  u(t)=(√((u cos θ)^2 +(u sin θ−gt)^2 ))  u(t)=(√(u^2 +gt(gt−2u sin θ)))  u(t)=(√(53^2 +10×2(10×2−2×53×sin 46.62°)))=40.84 m/s  Δu=53−40.84=12.16 m/s

α=30°x=ucosθty=usinθtgt22bylanding:y=xtanα=xsinαcosαt1=3.5sut1sinθgt122=sinαcosα×ut1cosθsinθgt12u=sinαcosαcosθcosαsinθgt1cosα2u=sinαcosθcosαsinθsinαcosθ=gt1cosα2usin(θα)=gt1cosα2uθ=α+sin1(gt1cosα2u)θ=30+sin1(10×3.5×cos30°2×53)=46.62°att=2s:ux(t)=ucosθuy(t)=usinθgtu(t)=(ucosθ)2+(usinθgt)2u(t)=u2+gt(gt2usinθ)u(t)=532+10×2(10×22×53×sin46.62°)=40.84m/sΔu=5340.84=12.16m/s

Commented by mrW1 last updated on 03/Jan/18

It can also be understood like this:  Δu_x =0  Δu_y =−gt=−10×2=−20 m/s  ⇒∣Δu∣=(√(0^2 +(−20)^2 ))=20 m/s

Itcanalsobeunderstoodlikethis:Δux=0Δuy=gt=10×2=20m/s⇒∣Δu∣=02+(20)2=20m/s

Commented by Tinkutara last updated on 03/Jan/18

Yes answer given is 20 m/s. Thank you very much Sir! I got the answer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com