All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 27073 by sorour87 last updated on 01/Jan/18
∫lnx×cos2lnxdx
Answered by prakash jain last updated on 02/Jan/18
u=lnxdu=1xdx⇒dx=xdu⇒dx=eudu=∫ueucos2uducos2u=ei2u+e−i2u2(i=−1)=∫ue(1+2i)u+e(1−2i)u2du∫ue(1+2i)uduue(1+2i)u1+2i−∫e(1+2i)u1+2iduue(1+2i)u1+2i−e(1+2i)u(1+2i)2totalintegral12[ue(1+2i)u1+2i−e(1+2i)u(1+2i)2+ue(1−2i)u1−2i−e(1−2i)u(1w−2i)2]pleaserecheckanswertogettheanswerincos/sinsubstituteeiθ=cosθ+isinθ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com