Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 27094 by abdo imad last updated on 02/Jan/18

if 1+x+x^2 =0 find the value of   A= (x+(1/x))^6  +( x^2 +(1/x^2 ))^6   +... (  x^(100) +(1/x^(100) ))^6  .

if1+x+x2=0findthevalueofA=(x+1x)6+(x2+1x2)6+...(x100+1x100)6.

Commented by AHSoomro last updated on 02/Jan/18

Question same as Q#27002

You can't use 'macro parameter character #' in math mode

Commented by abdo imad last updated on 08/Jan/18

A=Σ_(k=1) ^(100) (x^k  +x^(−k) )^6 = Σ_(k=1) ^(k=100) (x^k  +x_k ^(− ) ) but the roots of   1+x+x^2 =0 are j=e^(i((2π)/3))   and j^− = e^(−i((2π)/3))  we can choose x= e^(i((2π)/3))   A= Σ_(k=1) ^(100) (2Re(j^k ))^6 = 2^6  Σ_(k=1) ^(100)  cos(((2kπ)/3))^6   =64 Σ_(k=1) ^(100) cos(((2kπ)/3))^6   but  (cosx)^6  =( ((e^(ix) +e^(−ix) )/2))^6 = (1/2^6 ) Σ_(k=0) ^6  C_6 ^k   (e^(ix) )^k ( e^(−ix) )^(6−k)   = (1/2^6 ) Σ_(k=0) ^(6 )  C_6 ^k    e^(ikx)  e^(−i(6−k)x) ...be continued...

A=k=1100(xk+xk)6=k=1k=100(xk+xk)buttherootsof1+x+x2=0arej=ei2π3andj=ei2π3wecanchoosex=ei2π3A=k=1100(2Re(jk))6=26k=1100cos(2kπ3)6=64k=1100cos(2kπ3)6but(cosx)6=(eix+eix2)6=126k=06C6k(eix)k(eix)6k=126k=06C6keikxei(6k)x...becontinued...

Answered by bsayani309@gmail.com last updated on 05/Jan/18

1+x+x^2 =0  or.1+x^2 =−x  or.((1+x2)/x)=−1  or.((1/x)+x)=−1  or.((1/x)+x)^6 =1  thenA=1+2nd1+3rd1+.......+100th1=100

1+x+x2=0or.1+x2=xor.1+x2x=1or.(1x+x)=1or.(1x+x)6=1thenA=1+2nd1+3rd1+.......+100th1=100

Terms of Service

Privacy Policy

Contact: info@tinkutara.com