All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 27098 by abdo imad last updated on 02/Jan/18
letgiveS(x)=∑n=1∝xnnandW(x)=∑n=1∝(−1)nxnn2 calculateS(x).W(x).inthatweknow/x/<1.
Commented byprakash jain last updated on 02/Jan/18
ln(1−x)=−x−x22−...(A) =−∑∞n=1xnn ⇒S(x)=−ln(1−x) ln(1+x)dx=∑∞n=1(−1)n+1xnn ∫0xln(1+x)dx=∫0x∑∞n=1(−1)n+1xnn (x+1)ln(1+x)−x=∑∞n=1(−1)n+1xn+1n2 (x+1)ln(1+x)−x=−x∑∞n=1(−1)nxnn2 W(x)=(x+1)ln(1+x)−xx Given∣x∣<1bothS(x)andW(x) converge.
Commented byabdo imad last updated on 04/Jan/18
letcalculateS(x)W(x)informofseriesweputan=1n andbn=(−1)nn2 S(x)W(x)=∑n=1∝cnxnwithcn=∑i+j=naibj cn=∑i=1n−1aibn−i S(x)W(x)=∑n=1∝(∑i=1n−11i(−1)n−i(n−i)2)xn.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com