Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 27098 by abdo imad last updated on 02/Jan/18

let give S(x) = Σ_(n=1) ^∝ (x^n /n)  and  W(x)=  Σ_(n=1) ^∝ (((−1)^n x^n )/n^2 )  calculate   S(x).W(x).   in that we know /x/<1.

$${let}\:{give}\:{S}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{{x}^{{n}} }{{n}}\:\:{and}\:\:{W}\left({x}\right)=\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$ $${calculate}\:\:\:{S}\left({x}\right).{W}\left({x}\right).\:\:\:{in}\:{that}\:{we}\:{know}\:/{x}/<\mathrm{1}. \\ $$

Commented byprakash jain last updated on 02/Jan/18

ln (1−x)=−x−(x^2 /2)−...    (A)  =−Σ_(n=1) ^∞ (x^n /n)  ⇒S(x)=−ln (1−x)  ln (1+x)dx=Σ_(n=1) ^∞ (((−1)^(n+1) x^n )/n)   ∫_0 ^x ln (1+x)dx=∫_0 ^x Σ_(n=1) ^∞ (((−1)^(n+1) x^n )/n)   (x+1)ln (1+x)−x=Σ_(n=1) ^∞ (((−1)^(n+1) x^(n+1) )/n^2 )  (x+1)ln (1+x)−x=−xΣ_(n=1) ^∞ (((−1)^n x^n )/n^2 )  W(x)=(((x+1)ln (1+x)−x)/x)  Given ∣x∣<1 both S(x) and W(x)  converge.

$$\mathrm{ln}\:\left(\mathrm{1}−{x}\right)=−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−...\:\:\:\:\left({A}\right) \\ $$ $$=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}} \\ $$ $$\Rightarrow{S}\left({x}\right)=−\mathrm{ln}\:\left(\mathrm{1}−{x}\right) \\ $$ $$\mathrm{ln}\:\left(\mathrm{1}+{x}\right){dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}} }{{n}}\: \\ $$ $$\int_{\mathrm{0}} ^{{x}} \mathrm{ln}\:\left(\mathrm{1}+{x}\right){dx}=\int_{\mathrm{0}} ^{{x}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}} }{{n}}\: \\ $$ $$\left({x}+\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)−{x}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} } \\ $$ $$\left({x}+\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)−{x}=−{x}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$ $${W}\left({x}\right)=\frac{\left({x}+\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)−{x}}{{x}} \\ $$ $$\mathrm{Given}\:\mid{x}\mid<\mathrm{1}\:\mathrm{both}\:{S}\left({x}\right)\:\mathrm{and}\:{W}\left({x}\right) \\ $$ $$\mathrm{converge}. \\ $$

Commented byabdo imad last updated on 04/Jan/18

let calculate S(x)W(x) in form of series we put a_n =(1/n)  and b_n =(((−1)^n )/n^2 )  S(x)W(x)=  Σ_(n=1) ^∝ c_n  x^n    with  c_n  = Σ_(i+j=n) a_i  b_j   c_n = Σ_(i=1) ^(n−1)  a_i   b_(n−i)   S(x)W(x) = Σ_(n=1) ^∝ ( Σ_(i=1) ^(n−1)  (1/i) (((−1)^(n−i) )/((n−i)^2 )) )x^n  .

$${let}\:{calculate}\:{S}\left({x}\right){W}\left({x}\right)\:{in}\:{form}\:{of}\:{series}\:{we}\:{put}\:{a}_{{n}} =\frac{\mathrm{1}}{{n}} \\ $$ $${and}\:{b}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$ $${S}\left({x}\right){W}\left({x}\right)=\:\:\sum_{{n}=\mathrm{1}} ^{\propto} {c}_{{n}} \:{x}^{{n}} \:\:\:{with}\:\:{c}_{{n}} \:=\:\sum_{{i}+{j}={n}} {a}_{{i}} \:{b}_{{j}} \\ $$ $${c}_{{n}} =\:\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{a}_{{i}} \:\:{b}_{{n}−{i}} \\ $$ $${S}\left({x}\right){W}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\propto} \left(\:\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{i}}\:\frac{\left(−\mathrm{1}\right)^{{n}−{i}} }{\left({n}−{i}\right)^{\mathrm{2}} }\:\right){x}^{{n}} \:. \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com