Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 27128 by NECx last updated on 02/Jan/18

A body resting on a rough  horizontal plane require a pull of  18N inclined at 30° to the plane  first to move it.It was found  that a push of 22N inclined at 30°  to the plane just moved the body.  Determine the weight and   coefficient of friction.

$${A}\:{body}\:{resting}\:{on}\:{a}\:{rough} \\ $$$${horizontal}\:{plane}\:{require}\:{a}\:{pull}\:{of} \\ $$$$\mathrm{18}{N}\:{inclined}\:{at}\:\mathrm{30}°\:{to}\:{the}\:{plane} \\ $$$${first}\:{to}\:{move}\:{it}.{It}\:{was}\:{found} \\ $$$${that}\:{a}\:{push}\:{of}\:\mathrm{22}{N}\:{inclined}\:{at}\:\mathrm{30}° \\ $$$${to}\:{the}\:{plane}\:{just}\:{moved}\:{the}\:{body}. \\ $$$${Determine}\:{the}\:{weight}\:{and}\: \\ $$$${coefficient}\:{of}\:{friction}. \\ $$

Answered by mrW1 last updated on 02/Jan/18

Pull: F_1 cos α_1 =μ(mg−F_1 sin α_1 )   ...(i)  Push: F_2 cos α_2 =μ(mg+F_2 sin α_2 )    ...(ii)  (i)/(ii):  ⇒((F_1 cos α_1 )/(F_2 cos α_2 ))=((mg−F_1 sin α_1 )/(mg+F_2 sin α_2 ))  ⇒((F_1 cos α_1 )/(F_2 cos α_2 ))=((mg+F_2 sin α_2 −F_1 sin α_1 −F_2 sin α_2 )/(mg+F_2 sin α_2 ))  ⇒((F_1 cos α_1 )/(F_2 cos α_2 ))=1−((F_1 sin α_1 +F_2 sin α_2 )/(mg+F_2 sin α_2 ))  ⇒1−((F_1 cos α_1 )/(F_2 cos α_2 ))=((F_1 sin α_1 +F_2 sin α_2 )/(mg+F_2 sin α_2 ))  ⇒mg=((F_1 sin α_1 +F_2 sin α_2 )/(1−((F_1 cos α_1 )/(F_2 cos α_2 ))))−F_2 sin α_2   ⇒mg=F_2 sin α_2 (((1+((F_1 sin α_1 )/(F_2 sin α_2 )))/(1−((F_1 cos α_1 )/(F_2 cos α_2 ))))−1)  α_1 =α_2 =30°  ⇒mg=22×(1/2)(((1+((18)/(22)))/(1−((18)/(22))))−1)=11×9=99 N    (ii)−(i):  F_2 cos α_2 −F_1 cos α_1 =μ(F_2 sin α_2 +F_1 sin α_1 )  ⇒μ=((F_2 cos α_2 −F_1 cos α_1 )/(F_2 sin α_2 +F_1 sin α_1 ))  ⇒μ=((22−18)/(22+18))×((cos 30°)/(sin 30°))=((√3)/(10))=0.173

$${Pull}:\:{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} =\mu\left({mg}−{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} \right)\:\:\:...\left({i}\right) \\ $$$${Push}:\:{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} =\mu\left({mg}+{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} \right)\:\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\Rightarrow\frac{{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} }=\frac{{mg}−{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} }{{mg}+{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} }=\frac{{mg}+{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} −{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} −{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} }{{mg}+{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} }=\mathrm{1}−\frac{{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} +{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} }{{mg}+{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{1}−\frac{{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} }=\frac{{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} +{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} }{{mg}+{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} } \\ $$$$\Rightarrow{mg}=\frac{{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} +{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} }{\mathrm{1}−\frac{{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} }}−{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} \\ $$$$\Rightarrow{mg}={F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} \left(\frac{\mathrm{1}+\frac{{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} }}{\mathrm{1}−\frac{{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} }}−\mathrm{1}\right) \\ $$$$\alpha_{\mathrm{1}} =\alpha_{\mathrm{2}} =\mathrm{30}° \\ $$$$\Rightarrow{mg}=\mathrm{22}×\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}+\frac{\mathrm{18}}{\mathrm{22}}}{\mathrm{1}−\frac{\mathrm{18}}{\mathrm{22}}}−\mathrm{1}\right)=\mathrm{11}×\mathrm{9}=\mathrm{99}\:{N} \\ $$$$ \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$${F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} −{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} =\mu\left({F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} +{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} \right) \\ $$$$\Rightarrow\mu=\frac{{F}_{\mathrm{2}} \mathrm{cos}\:\alpha_{\mathrm{2}} −{F}_{\mathrm{1}} \mathrm{cos}\:\alpha_{\mathrm{1}} }{{F}_{\mathrm{2}} \mathrm{sin}\:\alpha_{\mathrm{2}} +{F}_{\mathrm{1}} \mathrm{sin}\:\alpha_{\mathrm{1}} } \\ $$$$\Rightarrow\mu=\frac{\mathrm{22}−\mathrm{18}}{\mathrm{22}+\mathrm{18}}×\frac{\mathrm{cos}\:\mathrm{30}°}{\mathrm{sin}\:\mathrm{30}°}=\frac{\sqrt{\mathrm{3}}}{\mathrm{10}}=\mathrm{0}.\mathrm{173} \\ $$

Commented by NECx last updated on 02/Jan/18

please can you post a diagram for  better understanding. This is  because I never knew that there  was a difference between the reaction  of forces when in a push and pull.

$${please}\:{can}\:{you}\:{post}\:{a}\:{diagram}\:{for} \\ $$$${better}\:{understanding}.\:{This}\:{is} \\ $$$${because}\:{I}\:{never}\:{knew}\:{that}\:{there} \\ $$$${was}\:{a}\:{difference}\:{between}\:{the}\:{reaction} \\ $$$${of}\:{forces}\:{when}\:{in}\:{a}\:{push}\:{and}\:{pull}. \\ $$

Commented by mrW1 last updated on 02/Jan/18

Commented by NECx last updated on 02/Jan/18

please the diagram you displayed  is not showing please can you post  it as a question.

$${please}\:{the}\:{diagram}\:{you}\:{displayed} \\ $$$${is}\:{not}\:{showing}\:{please}\:{can}\:{you}\:{post} \\ $$$${it}\:{as}\:{a}\:{question}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com