Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 27153 by abdo imad last updated on 02/Jan/18

find the value of Π_(k=1) ^(n−1)  sin(((kπ)/(2n)) ) .

$${find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)\:. \\ $$

Commented by abdo imad last updated on 03/Jan/18

let introduce the polynomial p(x)= x^(2n)  −1  the roots of p(x)  are the complex  z_(k ) =e^(i((2k)/n))   and k∈[[0,2n−1]] and  p(x)=λ Π_(k=0) ^(n−1) (x−z_k  ) its clear that λ=1  and  p(x)=Π_(k=0) ^(n−1) (x−z_k ) we have z_0 = 1  , z_1 = e^(i(π/n))    , z_2 = e^(i((2π)/n))   z_(n−1) = e^(i(((n−1)π)/n))    ,  z_n = −1   , z_(n+1) = e^(i(((n+1)π)/n))   ,   z_(2n−1)  =e^(i(((2n−1)π)/(2n)))   we see that  z_(2n−1)  =z_1 ^−      ,  z_(2n−2) =z_2 ^−    ,   z_(n+1)  =z_(n−1) ^−   ⇒ p(x)= (x^2 −1) Π_(k=1) ^(n−1) (x −z_k  )(x−z_k ^−  )  =(x^2  −1) Π_(k=1) ^(n−1) (x^2  −2cos(((kπ)/n))x +1) and for x^2 ≠1  ((p(x))/(x^2 −1))  =  Π_(k=1) ^(n−1) ( x^2  −2cos(((kπ)/n))x +1) and by using hospital theoem  lim_(x−>1)  Π_(k=1) ^(n−1) ( x^2 −2cos(((kπ)/n))x +1) =lim_(x−>1) ((p^′ (x))/(2x))    Π_(k=1) ^(n−1) 2(1−cos(((kπ)/n)))= lim_(x−>1)  ((2nx^(2n−1) )/(2x))  =n  ⇒ 4^(n−1)  Π_(k=1) ^(k=n−1)  sin^2 (((kπ)/(2n)) )=n  ⇒     Π_(k=1) ^(n−1)  sin^2 (((kπ)/(2n)) ) = (n/4^(n−1) )  ⇒  Π_(k=1) ^(n−1)  sin (((kπ)/(2n)) )=  ((√n)/2^(n−1) )             (   n≥2)

$${let}\:{introduce}\:{the}\:{polynomial}\:{p}\left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{1}\:\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$${are}\:{the}\:{complex}\:\:{z}_{{k}\:} ={e}^{{i}\frac{\mathrm{2}{k}}{{n}}} \:\:{and}\:{k}\in\left[\left[\mathrm{0},\mathrm{2}{n}−\mathrm{1}\right]\right]\:{and} \\ $$$${p}\left({x}\right)=\lambda\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{z}_{{k}} \:\right)\:{its}\:{clear}\:{that}\:\lambda=\mathrm{1}\:\:{and} \\ $$$${p}\left({x}\right)=\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{z}_{{k}} \right)\:{we}\:{have}\:{z}_{\mathrm{0}} =\:\mathrm{1}\:\:,\:{z}_{\mathrm{1}} =\:{e}^{{i}\frac{\pi}{{n}}} \:\:\:,\:{z}_{\mathrm{2}} =\:{e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \\ $$$${z}_{{n}−\mathrm{1}} =\:{e}^{{i}\frac{\left({n}−\mathrm{1}\right)\pi}{{n}}} \:\:\:,\:\:{z}_{{n}} =\:−\mathrm{1}\:\:\:,\:{z}_{{n}+\mathrm{1}} =\:{e}^{{i}\frac{\left({n}+\mathrm{1}\right)\pi}{{n}}} \:\:,\:\:\:{z}_{\mathrm{2}{n}−\mathrm{1}} \:={e}^{{i}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}} \\ $$$${we}\:{see}\:{that}\:\:{z}_{\mathrm{2}{n}−\mathrm{1}} \:={z}_{\mathrm{1}} ^{−} \:\:\:\:\:,\:\:{z}_{\mathrm{2}{n}−\mathrm{2}} ={z}_{\mathrm{2}} ^{−} \:\:\:,\:\:\:{z}_{{n}+\mathrm{1}} \:={z}_{{n}−\mathrm{1}} ^{−} \\ $$$$\Rightarrow\:{p}\left({x}\right)=\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}\:−{z}_{{k}} \:\right)\left({x}−{z}_{{k}} ^{−} \:\right) \\ $$$$=\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:+\mathrm{1}\right)\:{and}\:{for}\:{x}^{\mathrm{2}} \neq\mathrm{1} \\ $$$$\frac{{p}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:\:=\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\:{x}^{\mathrm{2}} \:−\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:+\mathrm{1}\right)\:{and}\:{by}\:{using}\:{hospital}\:{theoem} \\ $$$${lim}_{{x}−>\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\:{x}^{\mathrm{2}} −\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:+\mathrm{1}\right)\:={lim}_{{x}−>\mathrm{1}} \frac{{p}^{'} \left({x}\right)}{\mathrm{2}{x}} \\ $$$$\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \mathrm{2}\left(\mathrm{1}−{cos}\left(\frac{{k}\pi}{{n}}\right)\right)=\:{lim}_{{x}−>\mathrm{1}} \:\frac{\mathrm{2}{nx}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{2}{x}}\:\:={n} \\ $$$$\Rightarrow\:\mathrm{4}^{{n}−\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)={n} \\ $$$$\Rightarrow\:\:\:\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)\:=\:\frac{{n}}{\mathrm{4}^{{n}−\mathrm{1}} } \\ $$$$\Rightarrow\:\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{sin}\:\left(\frac{{k}\pi}{\mathrm{2}{n}}\:\right)=\:\:\frac{\sqrt{{n}}}{\mathrm{2}^{{n}−\mathrm{1}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:{n}\geqslant\mathrm{2}\right) \\ $$

Commented by Tinkutara last updated on 03/Jan/18

I have already asked this a long time back. See this at Q 19292.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com