Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27181 by abdo imad last updated on 02/Jan/18

find the value of  ∫_0 ^(∝ ) ((ln(1+t^2 ))/(1−t^2 )) dt

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\propto\:} \frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt} \\ $$

Commented by abdo imad last updated on 08/Jan/18

let use the ch. t=(1/x)  I= −∫_0 ^∞  ((ln(1+(1/x^2 )))/(1− (1/x^2 ))) ((−dx)/x^2 )  = ∫_0 ^∞   ((ln(1+x^2 ) −2lnx)/(x^2  −1))dx  =−∫_0 ^∞  ((ln(1+x^2 ))/(1−x^2 ))dx +2∫_0 ^∞ ((lnx)/(1−x^2 ))dx  ⇒2I= 2 ∫_0 ^∞  ((lnx)/(1−x^2 ))dx  ⇒I= ∫_0 ^∞   ((lnx)/(1−x^2 ))dx=∫_0 ^1 ((lnx)/(1−x^2 )) + ∫_1 ^∝ ((lnx)/(1−x^2 ))dx  the ch.x=(1/u) give  ∫_1 ^∝ ((lnx)/(1−x^2 )) dx= −∫_0 ^1  ((−lnu)/(1−(1/u^2 ))) ((−du)/u^2 )  =−∫_0 ^1  ((lnu)/(u^2 −1))du=∫_0 ^1   ((lnu)/(1−u^2 ))du  ⇒I= 2∫_0 ^1 ((lnx)/(1 −x^2 ))dx  I= 2 ∫_0 ^1 ( Σ_(n=0) ^∝  x^(2n) )lnx dx  I= 2 Σ_(n=0) ^∝ ∫_0 ^1 x^(2n) lnxdx intrgrstion by psrts  ∫_0 ^1  x^(2n) lnxdx=[ (1/(2n+1)) x^(2n+1) lnx]_0 ^1 − ∫_0 ^1 (x^(2n) /(2n+1))dx  =− (1/((2n+1)^2 ))  I= −2 Σ_(n=0) ^∝   (1/((2n+1)^2 ))=−2.(π^2 /8)  I= −(π^2 /4)  .

$${let}\:{use}\:{the}\:{ch}.\:{t}=\frac{\mathrm{1}}{{x}} \\ $$$${I}=\:−\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{\mathrm{1}−\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:\frac{−{dx}}{{x}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:−\mathrm{2}{lnx}}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:+\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\mathrm{2}{I}=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:+\:\int_{\mathrm{1}} ^{\propto} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$${the}\:{ch}.{x}=\frac{\mathrm{1}}{{u}}\:{give} \\ $$$$\int_{\mathrm{1}} ^{\propto} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{−{lnu}}{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\:\frac{−{du}}{{u}^{\mathrm{2}} } \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{lnu}}{{u}^{\mathrm{2}} −\mathrm{1}}{du}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnu}}{\mathrm{1}−{u}^{\mathrm{2}} }{du} \\ $$$$\Rightarrow{I}=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}\:−{x}^{\mathrm{2}} }{dx} \\ $$$${I}=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\sum_{{n}=\mathrm{0}} ^{\propto} \:{x}^{\mathrm{2}{n}} \right){lnx}\:{dx} \\ $$$${I}=\:\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\propto} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {lnxdx}\:{intrgrstion}\:{by}\:{psrts} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} {lnxdx}=\left[\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:{x}^{\mathrm{2}{n}+\mathrm{1}} {lnx}\right]_{\mathrm{0}} ^{\mathrm{1}} −\:\overset{\mathrm{1}} {\int}_{\mathrm{0}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{dx} \\ $$$$=−\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}=\:−\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=−\mathrm{2}.\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$${I}=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com