Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27182 by abdo imad last updated on 02/Jan/18

 find the value of I_a = ∫∫_D_a  e^(−((x^2  +y^2 )/2)) dxdy  with  D_a  ={(x,y)∈R^2  / x^2 +y^2 ≤ a^2   }

$$\:{find}\:{the}\:{value}\:{of}\:{I}_{{a}} =\:\int\int_{{D}_{{a}} } {e}^{−\frac{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{\mathrm{2}}} {dxdy}\:\:{with} \\ $$$${D}_{{a}} \:=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\:{a}^{\mathrm{2}} \:\:\right\} \\ $$

Commented by abdo imad last updated on 05/Jan/18

we use the polar coordinates and the diffeomorphismeψ  (r,θ)−>ψ(r,θ) =(x,y)=(rcosθ,rsinθ)  I_(a ) =∫∫_(o≤r≤a) e^(−(r^2 /2))  rdr dθ  = ∫_0 ^(2π)   ( ∫_0 ^a   r e^(−(r^2 /2))  dr )dθ= 2π ∫_0 ^a  r e^(−(r^2 /2)) dr  = 2π[  − e^(−(r^2 /2))      ]_0 ^a =2π(1− e^(−(a^2 /2))    )

$${we}\:{use}\:{the}\:{polar}\:{coordinates}\:{and}\:{the}\:{diffeomorphisme}\psi \\ $$$$\left({r},\theta\right)−>\psi\left({r},\theta\right)\:=\left({x},{y}\right)=\left({rcos}\theta,{rsin}\theta\right) \\ $$$${I}_{{a}\:} =\int\int_{{o}\leqslant{r}\leqslant{a}} {e}^{−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}} \:{rdr}\:{d}\theta \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\left(\:\int_{\mathrm{0}} ^{{a}} \:\:{r}\:{e}^{−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}} \:{dr}\:\right){d}\theta=\:\mathrm{2}\pi\:\int_{\mathrm{0}} ^{{a}} \:{r}\:{e}^{−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}} {dr} \\ $$$$=\:\mathrm{2}\pi\left[\:\:−\:{e}^{−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}} \:\:\:\:\:\right]_{\mathrm{0}} ^{{a}} =\mathrm{2}\pi\left(\mathrm{1}−\:{e}^{−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}} \:\:\:\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com