All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27183 by abdo imad last updated on 02/Jan/18
findthevalueofI=∫01t−1lntdt.
Answered by prakash jain last updated on 03/Jan/18
F(x)=∫01tx(t−1)lntdtdFdx=∫01∂∂x(tx(t−1)lnt)dtdFdx=∫01tx(t−1)lntlntdtdFdx=∫01tx+1−txdt=[tx+2x+2−tx+1x+1]01=1x+2−1x+1F(x)=ln∣x+2x+1∣+CF(−∞)=0⇒C=0F(x)=ln∣x+2x+1∣I=F(0)=ln2
Commented by prakash jain last updated on 03/Jan/18
pleasecommentifmistakes.thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com