All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27184 by abdo imad last updated on 02/Jan/18
calculateintermsofxf(x)=∫0π2dt1+xsint.
Commented by abdo imad last updated on 05/Jan/18
letdothechangementtan(t2)=α⇔t=2arctanαf(x)=∫012dα1+α21+2xα1+α2=∫012dα1+α2+2xα=∫012dαα2+2xα+1=∫012dα(α+x)2+1−x2case1/x/<1wedothech.α+x=1−x2tf(x)=∫x1−x2x+11−x221−x2dt(1−x2)(1+t2)f(x)=21−x2[arctan(t)]x1−x21+x1−xf(x)=21−x2(arctan(1+x1−x)−arctan(x1−x2))case2if/x/>1f(x)=1x∫0π2dtx−1+sinxandwecanusethesamemthodedueto/x−1/<1.....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com