Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27184 by abdo imad last updated on 02/Jan/18

calculate in terms of x   f(x)= ∫_0 ^(π/(2 )) (dt/(1+xsint)) .

$${calculate}\:{in}\:{terms}\:{of}\:{x}\:\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \frac{{dt}}{\mathrm{1}+{xsint}}\:. \\ $$

Commented by abdo imad last updated on 05/Jan/18

let do the changement  tan((t/2))= α⇔t=2arctanα  f(x)= ∫_0 ^1    (((2dα)/(1+α^2 ))/(1+ ((2xα)/(1+α^2 ))))  =  ∫_0 ^1   ((2dα)/(1+α^2  +2xα))=∫_0 ^1   ((2dα)/(α^2 +2xα +1))  =∫_0 ^1     ((2dα)/((α+x)^2 +1−x^2 ))  case 1   /x/<1   we do the ch.  α+x=(√(1−x^2 )) t  f(x)= ∫_(x/(√(1−x^2 ))) ^((x+1)/(√(1−x^2 )))        ((2(√(1−x^2  )) dt)/((1−x^2 )(1+t^2 )))  f(x)=(2/(√(1−x^2 )))  [arctan(t)]_(x/(√(1−x^2 ))) ^((√(1+x))/(√(1−x)))   f(x)= (2/(√(1−x^2 ))) ( arctan(((√(1+x))/(√(1−x))) ) −arctan((x/(√(1−x^2 )))))  case2  if /x/>1    f(x)= (1/x) ∫_0 ^(π/2)    (dt/(x^(−1) +sinx))  and we can use the same mthode  due to /x^(−1) /<1.....

$${let}\:{do}\:{the}\:{changement}\:\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)=\:\alpha\Leftrightarrow{t}=\mathrm{2}{arctan}\alpha \\ $$$${f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}{\mathrm{1}+\:\frac{\mathrm{2}{x}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\:=\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} \:+\mathrm{2}{x}\alpha}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{d}\alpha}{\alpha^{\mathrm{2}} +\mathrm{2}{x}\alpha\:+\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{d}\alpha}{\left(\alpha+{x}\right)^{\mathrm{2}} +\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${case}\:\mathrm{1}\:\:\:/{x}/<\mathrm{1}\:\:\:{we}\:{do}\:{the}\:{ch}.\:\:\alpha+{x}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{t} \\ $$$${f}\left({x}\right)=\:\int_{\frac{{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} ^{\frac{{x}+\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} \:\:\:\:\:\:\:\frac{\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}\:{dt}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\:\left[{arctan}\left({t}\right)\right]_{\frac{{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} ^{\frac{\sqrt{\mathrm{1}+{x}}}{\sqrt{\mathrm{1}−{x}}}} \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\left(\:{arctan}\left(\frac{\sqrt{\mathrm{1}+{x}}}{\sqrt{\mathrm{1}−{x}}}\:\right)\:−{arctan}\left(\frac{{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)\right) \\ $$$${case}\mathrm{2}\:\:{if}\:/{x}/>\mathrm{1}\:\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{{x}^{−\mathrm{1}} +{sinx}}\:\:{and}\:{we}\:{can}\:{use}\:{the}\:{same}\:{mthode} \\ $$$${due}\:{to}\:/{x}^{−\mathrm{1}} /<\mathrm{1}..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com