Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27186 by abdo imad last updated on 02/Jan/18

find I=∫_0 ^π   (dx/(cosx +2sinx)) .

$${find}\:{I}=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{{cosx}\:+\mathrm{2}{sinx}}\:. \\ $$

Commented by abdo imad last updated on 04/Jan/18

we do the changement  tan((x/2))=t  I= ∫_0 ^∞  (((2dt)/(1+t^2 ))/(((1−t^2 )/(1+t^2 ))+((4t)/(1+t^2 )))) = ∫_0 ^∞ ((2dt)/(−t^2 +4t +1))  = −2 ∫_0 ^∞  (dt/(t^2 −4t −1)) = −2 ∫_0 ^∞ (dt/(t^2  −4t +4 −5))  =−2∫_0 ^∞ (dt/((t−2)^2  −5))=−2∫_0 ^∞ (dt/((t−2+(√5))(t−2−(√(5)))))  = (1/(√5))∫_0 ^∞ ((1/(t−2+(√)5)) −(1/(t−2−(√5))))  =(1/(√5)) [ ln/((t−2+(√5))/(t−2−(√5)))/]_0 ^∝   =(1/(√5))(−ln/((−2+(√5))/(−2−(√5)))/)= (1/(√5)) ln(((2+(√5))/(−2+(√5))))  .

$${we}\:{do}\:{the}\:{changement}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\infty} \:\frac{\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{dt}}{−{t}^{\mathrm{2}} +\mathrm{4}{t}\:+\mathrm{1}} \\ $$$$=\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{4}{t}\:−\mathrm{1}}\:=\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{{t}^{\mathrm{2}} \:−\mathrm{4}{t}\:+\mathrm{4}\:−\mathrm{5}} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left({t}−\mathrm{2}\right)^{\mathrm{2}} \:−\mathrm{5}}=−\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left({t}−\mathrm{2}+\sqrt{\mathrm{5}}\right)\left({t}−\mathrm{2}−\sqrt{\left.\mathrm{5}\right)}\right.} \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{t}−\mathrm{2}+\sqrt{}\mathrm{5}}\:−\frac{\mathrm{1}}{{t}−\mathrm{2}−\sqrt{\mathrm{5}}}\right) \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\left[\:{ln}/\frac{{t}−\mathrm{2}+\sqrt{\mathrm{5}}}{{t}−\mathrm{2}−\sqrt{\mathrm{5}}}/\right]_{\mathrm{0}} ^{\propto} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(−{ln}/\frac{−\mathrm{2}+\sqrt{\mathrm{5}}}{−\mathrm{2}−\sqrt{\mathrm{5}}}/\right)=\:\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:{ln}\left(\frac{\mathrm{2}+\sqrt{\mathrm{5}}}{−\mathrm{2}+\sqrt{\mathrm{5}}}\right)\:\:. \\ $$

Answered by mrW1 last updated on 03/Jan/18

I=∫_0 ^π   (dx/(cosx +2sinx))   =(1/(√5))∫_0 ^π   (dx/((1/(√5))cosx +(2/(√5))sinx))   =(1/(√5))∫_0 ^π   (dx/(sin α cosx +cos α sinx))   =(1/(√5))∫_0 ^π   (dx/(sin(x+α)))   ......  =(1/(√5)) ln (9+4(√5))

$${I}=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{{cosx}\:+\mathrm{2}{sinx}}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}{cosx}\:+\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}{sinx}}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\mathrm{sin}\:\alpha\:{cosx}\:+\mathrm{cos}\:\alpha\:{sinx}}\: \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{{sin}\left({x}+\alpha\right)}\: \\ $$$$...... \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\mathrm{ln}\:\left(\mathrm{9}+\mathrm{4}\sqrt{\mathrm{5}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com