Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27187 by abdo imad last updated on 02/Jan/18

find I=  ∫_0 ^∝  ((cosx)/(cosh(x)))dx

$${find}\:{I}=\:\:\int_{\mathrm{0}} ^{\propto} \:\frac{{cosx}}{{cosh}\left({x}\right)}{dx} \\ $$

Commented by abdo imad last updated on 08/Jan/18

I= ∫_0 ^∞  ((cosx)/((e^x  +e^(−x) )/2))dx= 2 ∫_0 ^∞ (e^(−x) /(1+e^(−2x) ))cosx dx  =2∫_0 ^∞  e^(−x) (Σ_(n=0) ^∝  e^(−2nx) )cosxdx  =2 Σ_(n=0) ^∝  ∫_0 ^∞  e^(−(2n+1)x) cosxdx but  let calculate ∫_0 ^∞  e^(−ax) cosx dx   with a>0  ∫_0 ^∞  e^(−ax) cosx dx= Re (∫_0 ^∞  e^((i−a)x) dx) and   ∫_0 ^∞  e^((i−a)x) dx = [ (1/(i−a)) e^((i−a)x) ]_(x=0) ^(x−>∝) = −(1/(i−a))= (1/(a−i))  =((a+i)/(a^2  +1)) ⇒∫_0 ^∞  e^(−ax) cosxdx= (a/(1+a^2 )) so   ∫_0 ^∞   e^(−(2n+1)x) cosx dx=((2n+1)/(1+(2n+1)^2 ))  I=2Σ_(n=0) ^∝   ((2n+1)/(1+(2n+1)^2 )) and this sum is calculated by fourier  series...be continued....

$${I}=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}}{\frac{{e}^{{x}} \:+{e}^{−{x}} }{\mathrm{2}}}{dx}=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} }{\mathrm{1}+{e}^{−\mathrm{2}{x}} }{cosx}\:{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} \left(\sum_{{n}=\mathrm{0}} ^{\propto} \:{e}^{−\mathrm{2}{nx}} \right){cosxdx} \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {cosxdx}\:{but} \\ $$$${let}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ax}} {cosx}\:{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ax}} {cosx}\:{dx}=\:{Re}\:\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{\left({i}−{a}\right){x}} {dx}\right)\:{and} \\ $$$$\:\int_{\mathrm{0}} ^{\infty} \:{e}^{\left({i}−{a}\right){x}} {dx}\:=\:\left[\:\frac{\mathrm{1}}{{i}−{a}}\:{e}^{\left({i}−{a}\right){x}} \right]_{{x}=\mathrm{0}} ^{{x}−>\propto} =\:−\frac{\mathrm{1}}{{i}−{a}}=\:\frac{\mathrm{1}}{{a}−{i}} \\ $$$$=\frac{{a}+{i}}{{a}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ax}} {cosxdx}=\:\frac{{a}}{\mathrm{1}+{a}^{\mathrm{2}} }\:{so} \\ $$$$\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {cosx}\:{dx}=\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{1}+\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{1}+\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:{and}\:{this}\:{sum}\:{is}\:{calculated}\:{by}\:{fourier} \\ $$$${series}...{be}\:{continued}.... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com