All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27187 by abdo imad last updated on 02/Jan/18
findI=∫0∝cosxcosh(x)dx
Commented by abdo imad last updated on 08/Jan/18
I=∫0∞cosxex+e−x2dx=2∫0∞e−x1+e−2xcosxdx=2∫0∞e−x(∑n=0∝e−2nx)cosxdx=2∑n=0∝∫0∞e−(2n+1)xcosxdxbutletcalculate∫0∞e−axcosxdxwitha>0∫0∞e−axcosxdx=Re(∫0∞e(i−a)xdx)and∫0∞e(i−a)xdx=[1i−ae(i−a)x]x=0x−>∝=−1i−a=1a−i=a+ia2+1⇒∫0∞e−axcosxdx=a1+a2so∫0∞e−(2n+1)xcosxdx=2n+11+(2n+1)2I=2∑n=0∝2n+11+(2n+1)2andthissumiscalculatedbyfourierseries...becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com