All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 27189 by abdo imad last updated on 02/Jan/18
letgiveSn=∑p=1p=narctan(12p2)findlimn−>∝Sn.
Answered by prakash jain last updated on 03/Jan/18
tan−112p2=tan−1(2p+1)−(2p−1)1+(2p+1)(2p+1) =tan−1(2p+1)−tan−1(2p−1) p:1→tan−13−tan−11 p:2→tan−15−tan−13 ⋮ p:n−1→tan−1(2n−1)−tan−1(2n−3) p:n→tan−1(2n+1)−tan−1(2n−3>1) ∑np=1tan−112p2=tan−1(2n+1)−tan−11 limn→∞∑np=1tan−112p2=π2−π4=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com