Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 2720 by prakash jain last updated on 25/Nov/15

Analytical Continuation  Sum of the below divergent series was  shown to be using analytical continuation.  Σ_(i=1) ^n 2^(i−1) =−1      ...(A)  ζ(−1)=Σ_(i=0) ^∞ i=−(1/(12))      ...(B)  While reading about analytical continuation,  I found the found the following:  If f_1  is a analytic function over domain D_1  and  If f_2  is a analytic function over domain D_2  and  f_1 =f_2  on D_1 ∩D_2 , f_2  is called analytical   continuation of f_1  and vice versa.  Question:  In case of series (A) and (B) above what function  is used as f_2  to find the sum also what is used as f_1 ?

$$\mathrm{Analytical}\:\mathrm{Continuation} \\ $$$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{below}\:\mathrm{divergent}\:\mathrm{series}\:\mathrm{was} \\ $$$$\mathrm{shown}\:\mathrm{to}\:\mathrm{be}\:\mathrm{using}\:\mathrm{analytical}\:\mathrm{continuation}. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{i}−\mathrm{1}} =−\mathrm{1}\:\:\:\:\:\:...\left(\mathrm{A}\right) \\ $$$$\zeta\left(−\mathrm{1}\right)=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{i}=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\:\:...\left(\mathrm{B}\right) \\ $$$$\mathrm{While}\:\mathrm{reading}\:\mathrm{about}\:\mathrm{analytical}\:\mathrm{continuation}, \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{the}\:\mathrm{found}\:\mathrm{the}\:\mathrm{following}: \\ $$$$\mathrm{If}\:{f}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{analytic}\:\mathrm{function}\:\mathrm{over}\:\mathrm{domain}\:\mathrm{D}_{\mathrm{1}} \:\mathrm{and} \\ $$$$\mathrm{If}\:{f}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{analytic}\:\mathrm{function}\:\mathrm{over}\:\mathrm{domain}\:\mathrm{D}_{\mathrm{2}} \:\mathrm{and} \\ $$$${f}_{\mathrm{1}} ={f}_{\mathrm{2}} \:\mathrm{on}\:\mathrm{D}_{\mathrm{1}} \cap\mathrm{D}_{\mathrm{2}} ,\:{f}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{called}\:\mathrm{analytical}\: \\ $$$$\mathrm{continuation}\:\mathrm{of}\:{f}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{vice}\:\mathrm{versa}. \\ $$$$\boldsymbol{\mathrm{Question}}: \\ $$$$\mathrm{In}\:\mathrm{case}\:\mathrm{of}\:\mathrm{series}\:\left(\mathrm{A}\right)\:\mathrm{and}\:\left(\mathrm{B}\right)\:\mathrm{above}\:\mathrm{what}\:\mathrm{function} \\ $$$$\mathrm{is}\:\mathrm{used}\:\mathrm{as}\:{f}_{\mathrm{2}} \:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{also}\:\mathrm{what}\:\mathrm{is}\:\mathrm{used}\:\mathrm{as}\:{f}_{\mathrm{1}} ? \\ $$

Commented by prakash jain last updated on 25/Nov/15

There is also a question below by Filup about  definition of ζ(s) for s<1 using analytical  continuity.

$$\mathrm{There}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{question}\:\mathrm{below}\:\mathrm{by}\:\mathrm{Filup}\:\mathrm{about} \\ $$$$\mathrm{definition}\:\mathrm{of}\:\zeta\left({s}\right)\:\mathrm{for}\:{s}<\mathrm{1}\:\mathrm{using}\:\mathrm{analytical} \\ $$$$\mathrm{continuity}. \\ $$

Answered by 123456 last updated on 26/Nov/15

for A  f_1 (x)=Σ_(i=0) ^(+∞) x^i   f_2 (x)=(1/(1−x))  f_1 (x)=lim_(n→+∞) Σ_(i=0) ^n x^i =lim_(n→+∞) ((x^(n+1) −1)/(x−1))  ∣x∣<1⇒x^(n+1) →0⇒f_1 (x)=((0−1)/(x−1))=(1/(1−x))  f_1 (x)=f_2 (x) ∣x∣<1, so f_2 (x)=(1/(1−x)) is a analytic continuation

$$\mathrm{for}\:\mathrm{A} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{+\infty} {\sum}}{x}^{{i}} \\ $$$${f}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{i}} =\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}} \\ $$$$\mid{x}\mid<\mathrm{1}\Rightarrow{x}^{{n}+\mathrm{1}} \rightarrow\mathrm{0}\Rightarrow{f}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{0}−\mathrm{1}}{{x}−\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)={f}_{\mathrm{2}} \left({x}\right)\:\mid{x}\mid<\mathrm{1},\:\mathrm{so}\:{f}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{analytic}\:\mathrm{continuation} \\ $$

Commented by 123456 last updated on 26/Nov/15

S=Σ_(i=0) ^n x^i   xS=xΣ_(i=0) ^n x^i =Σ_(i=0) ^n x^(i+1) =Σ_(i=1) ^(n+1) x^i   (x−1)S=Σ_(i=1) ^(n+1) x^i −Σ_(i=0) ^n x^i   (x−1)S=x^(n+1) −1  S=((x^(n+1) −1)/(x−1))

$$\mathrm{S}=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{i}} \\ $$$${x}\mathrm{S}={x}\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{i}} =\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{i}+\mathrm{1}} =\underset{{i}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{x}^{{i}} \\ $$$$\left({x}−\mathrm{1}\right)\mathrm{S}=\underset{{i}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{x}^{{i}} −\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{i}} \\ $$$$\left({x}−\mathrm{1}\right)\mathrm{S}={x}^{{n}+\mathrm{1}} −\mathrm{1} \\ $$$$\mathrm{S}=\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}} \\ $$

Commented by prakash jain last updated on 26/Nov/15

Thank You.

$$\mathrm{Thank}\:\mathrm{You}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com