Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 27204 by rish@bh last updated on 03/Jan/18

if g(x)=f(x)+f(1−x)  and f^((2)) (x)<0  then show that   g(x) is increasing in (0,1/2) and  g(x) is decreasing in (1/2,1)

ifg(x)=f(x)+f(1x) andf(2)(x)<0 thenshowthat g(x)isincreasingin(0,1/2)and g(x)isdecreasingin(1/2,1)

Answered by Giannibo last updated on 03/Jan/18

    ∃g′ because ∃f′′⇒∃f′  g′(x)=f′(x)−f′(1−x)  f′′(x)<0 ⇒f′↓  If x<1−x ⇔x<(1/2)  ⇒^(f′↓) f′(x)>f′(1−x)  g′(x)>0⇒ g↑    If x>1−x⇔x>(1/2)  ⇒^(f′↓) f′(x)<f′(1−x)  g′(x)<0 ⇒ g↓

gbecauseff g(x)=f(x)f(1x) f(x)<0f Ifx<1xx<12 ff(x)>f(1x) g(x)>0g Ifx>1xx>12 ff(x)<f(1x) g(x)<0g

Commented byrish@bh last updated on 03/Jan/18

Thank you!

Thankyou!

Commented byPenguin last updated on 04/Jan/18

What does f′↓ mean??

Whatdoesfmean??

Commented byGiannibo last updated on 04/Jan/18

f′ is decreasing

fisdecreasing

Terms of Service

Privacy Policy

Contact: info@tinkutara.com