Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 2722 by prakash jain last updated on 25/Nov/15

Is the following series convergent  Σ_(i=1) ^∞  ((sin i)/i)

$$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series}\:\mathrm{convergent} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{sin}\:{i}}{{i}} \\ $$

Answered by Filup last updated on 25/Nov/15

no    for x∈(−∞,∞)  −1≤sin x≤1

$$\mathrm{no} \\ $$$$ \\ $$$$\mathrm{for}\:{x}\in\left(−\infty,\infty\right) \\ $$$$−\mathrm{1}\leqslant{sin}\:{x}\leqslant\mathrm{1} \\ $$

Answered by prakash jain last updated on 25/Nov/15

∫_0 ^( ∞)  ((sin x)/x) dx=(π/2)  ∫_1 ^( ∞)  ((sin x)/x) dx=(π/2)−Si(1)  As the integral converges, the series is  convergent.  Update: Wrong test used. The above  argument does not prove covergence.

$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{sin}\:{x}}{{x}}\:{dx}=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{1}} ^{\:\infty} \:\frac{\mathrm{sin}\:{x}}{{x}}\:{dx}=\frac{\pi}{\mathrm{2}}−\mathrm{Si}\left(\mathrm{1}\right) \\ $$$$\mathrm{As}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{converges},\:\mathrm{the}\:\mathrm{series}\:\mathrm{is} \\ $$$$\mathrm{convergent}. \\ $$$$\mathrm{Update}:\:\mathrm{Wrong}\:\mathrm{test}\:\mathrm{used}.\:\mathrm{The}\:\mathrm{above} \\ $$$$\mathrm{argument}\:\mathrm{does}\:\mathrm{not}\:\mathrm{prove}\:\mathrm{covergence}. \\ $$

Commented by Yozzi last updated on 26/Nov/15

I conjectured that if we let  u_n =((sini)/i)+((sin(i+1))/(i+1))+((sin(i+2))/(i+2)) and   u_(n+1) =((sin(i+3))/(i+3))+((sin(i+4))/(i+4))+((sin(i+5))/(i+5))  for Σ_(i=1) ^∞ ((sini)/i)=u_1 +u_2 +u_3 +...  {u_n } is an alternating sequence.  Yes. I think your u_j  is alternating.

$${I}\:{conjectured}\:{that}\:{if}\:{we}\:{let} \\ $$$${u}_{{n}} =\frac{{sini}}{{i}}+\frac{{sin}\left({i}+\mathrm{1}\right)}{{i}+\mathrm{1}}+\frac{{sin}\left({i}+\mathrm{2}\right)}{{i}+\mathrm{2}}\:{and}\: \\ $$$${u}_{{n}+\mathrm{1}} =\frac{{sin}\left({i}+\mathrm{3}\right)}{{i}+\mathrm{3}}+\frac{{sin}\left({i}+\mathrm{4}\right)}{{i}+\mathrm{4}}+\frac{{sin}\left({i}+\mathrm{5}\right)}{{i}+\mathrm{5}} \\ $$$${for}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sini}}{{i}}={u}_{\mathrm{1}} +{u}_{\mathrm{2}} +{u}_{\mathrm{3}} +... \\ $$$$\left\{{u}_{{n}} \right\}\:{is}\:{an}\:{alternating}\:{sequence}. \\ $$$${Yes}.\:{I}\:{think}\:{your}\:{u}_{{j}} \:{is}\:{alternating}. \\ $$

Commented by prakash jain last updated on 26/Nov/15

Σ_(n=1) ^∞ ((sin n)/n)=Σ_(j=1) ^∞ u_j   u_j =Σ_(k=⌈π(j−1)⌉) ^(⌊πj⌋) ((sin k)/k)  is Σ_(j=1) ^∞ u_j  an alternating series?

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\:{n}}{{n}}=\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}{u}_{{j}} \\ $$$${u}_{{j}} =\underset{{k}=\lceil\pi\left({j}−\mathrm{1}\right)\rceil} {\overset{\lfloor\pi{j}\rfloor} {\sum}}\frac{\mathrm{sin}\:{k}}{{k}} \\ $$$$\mathrm{is}\:\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}{u}_{{j}} \:\mathrm{an}\:\mathrm{alternating}\:\mathrm{series}? \\ $$

Commented by Filup last updated on 25/Nov/15

My mistake. I Was thinking  incorrectly  i was thinking of Σ(sin x)

$${My}\:{mistake}.\:\mathrm{I}\:\mathrm{Was}\:\mathrm{thinking} \\ $$$$\mathrm{incorrectly} \\ $$$$\mathrm{i}\:\mathrm{was}\:\mathrm{thinking}\:\mathrm{of}\:\Sigma\left(\mathrm{sin}\:{x}\right) \\ $$

Commented by Yozzi last updated on 25/Nov/15

f(x)=((sinx)/x) is not a positive,monotonically  decreasing function ∀x∈[1,∞) to  use the integral test.

$${f}\left({x}\right)=\frac{{sinx}}{{x}}\:{is}\:{not}\:{a}\:{positive},{monotonically} \\ $$$${decreasing}\:{function}\:\forall{x}\in\left[\mathrm{1},\infty\right)\:{to} \\ $$$${use}\:{the}\:{integral}\:{test}. \\ $$

Commented by prakash jain last updated on 25/Nov/15

Ok. You are right.  How to prove that Σ_(i=1) ^∞ sin(x)/x is convergent?

$$\mathrm{Ok}.\:\mathrm{You}\:\mathrm{are}\:\mathrm{right}. \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{sin}\left({x}\right)/{x}\:\mathrm{is}\:\mathrm{convergent}? \\ $$

Commented by Yozzi last updated on 25/Nov/15

Alternating series test:   For an infinite series Σ_(n=1) ^∞ u_(n ) of alternating  terms the following conditions are  required for convergence:  (1) ∣u_(n+1) ∣≤∣u_n ∣ for n≥N  (2) lim_(n→∞) u_n =0 (or lim_(n→∞) ∣u_n ∣=0)

$${Alternating}\:{series}\:{test}:\: \\ $$$${For}\:{an}\:{infinite}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{u}_{{n}\:} {of}\:{alternating} \\ $$$${terms}\:{the}\:{following}\:{conditions}\:{are} \\ $$$${required}\:{for}\:{convergence}: \\ $$$$\left(\mathrm{1}\right)\:\mid{u}_{{n}+\mathrm{1}} \mid\leqslant\mid{u}_{{n}} \mid\:{for}\:{n}\geqslant{N} \\ $$$$\left(\mathrm{2}\right)\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{u}_{{n}} =\mathrm{0}\:\left({or}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\mid{u}_{{n}} \mid=\mathrm{0}\right) \\ $$

Commented by prakash jain last updated on 25/Nov/15

The series is not alternating either.

$$\mathrm{The}\:\mathrm{series}\:\mathrm{is}\:\mathrm{not}\:\mathrm{alternating}\:\mathrm{either}. \\ $$

Commented by Yozzi last updated on 25/Nov/15

true...

$${true}... \\ $$

Commented by prakash jain last updated on 26/Nov/15

Based on your suggestion I was trying to  come up with an equivalent alternating  series.

$$\mathrm{Based}\:\mathrm{on}\:\mathrm{your}\:\mathrm{suggestion}\:\mathrm{I}\:\mathrm{was}\:\mathrm{trying}\:\mathrm{to} \\ $$$$\mathrm{come}\:\mathrm{up}\:\mathrm{with}\:\mathrm{an}\:\mathrm{equivalent}\:\mathrm{alternating} \\ $$$$\mathrm{series}. \\ $$

Answered by Yozzi last updated on 26/Nov/15

Consider the series T=Σ_(i=1) ^∞ ((sinix)/i) (x≠±π).  Dirichlet′s test may be used to prove  that T is uniformly convergent in  an interval a≤x≤b.  Suppose that:  (1) {a_n } is a sequence of positive   constants that are monotonic  decreasing,having a limit of zero;  (2) ∃P (constant) such that for  a≤x≤b, ∣Σ_(r=1) ^n u_r (x)∣<P  ,∀n>N.  Then, the series Σ_(n=1) ^∞ a_n u_n (x) is   uniformly convergent on the interval  a≤x≤b.  Let u_i (x)=sinix, a_i =(1/i)  (i∈N).  (1)For the sequence {a_i }, its terms   are monotonic decreasing and  positive.  lim_(i→∞) a_i =lim_(i→∞) (1/i)=(1/∞)=0.  (2)Suppose 1≤x≤(π/2) and define S=Σ_(i=1) ^n u_i (x).  (sin(x/2))S=Σ_(r=1) ^n sinixsin(x/2).  (1≤x≤(π/2))  Since −2sinixsin(x/2)=cos(i+(1/2))x−cos(i−(1/2))x  ⇒sinixsin(x/2)=((−1)/2){f(r)−f(r−1)}  where f(r)=cos(i+(1/2))x   (i∈N).  ∴Ssin(x/2)=((−1)/2)Σ_(i=1) ^n {f(r)−f(r−1)}  −2Ssin(x/2)=f(1)−f(0)+f(2)−f(1)+  f(3)−f(2)+f(4)−f(3)+f(5)−f(4)+  ...+f(n−3)−f(n−4)+f(n−2)−f(n−3)  +f(n−1)−f(n−2)+f(n)−f(n−1)  −2Ssin(x/2)=f(n)−f(0)  ⇒S=((f(0)−f(n))/(2sin(x/2)))  S=((cos(x/2)−cos(n+(1/2))x)/(2sin(x/2)))  −(cos(n+(1/2))x−cos(x/2))  =−(−2sin((n+(1/2)+(1/2))/2)xsin((n+(1/2)−(1/2))/2)x)  =2sin((n+1)/2)xsin((nx)/2)  ∴S=((sin((nx)/2)sin((n+1)/2)x)/(sin(x/2)))=((1/(sin(x/2))))sin((nx)/2)sin((n+1)/2)x  ∴∣S∣=∣(1/(sin(x/2)))sin((n+1)/2)sin((nx)/2)∣  Since 1≤x≤(π/2)⇒(1/2)≤(x/2)≤(π/4)⇒sin(x/2)≥sin(1/2) for 1≤x≤(π/2).  ∴∣S∣=cosec(x/2)∣sin((nx)/2)sin((n+1)/2)x∣  Now∣sin(u/2)∣<1 for ∀u∈R  ⇒cosec(x/2)∣sin((nx)/2)sin((n+1)/2)x∣<(1/(sin(x/2))) ∀n>1  ⇒ ∣S∣<(1/(sin(x/2)))  ∀n>1 (N=1)  max(sin(x/2)) for 1≤x≤(π/2) is sin(π/4)=(1/(√2))  ⇒∣S∣<(√2) ⇒P=(√2) for 1≤x≤(π/2).  So, conditions (1) and (2) are satisfied.  Hence, by Dirichlet′s test,  Σ_(i=1) ^∞ ((sinix)/i) is uniformly convergent  in the interval 1≤x≤(π/2). Hence, if x=1,  Σ_(i=1) ^∞ ((sini)/i) is uniformly convergent.    (I tried part (2) but I know the approach  is incorrect.)

$${Consider}\:{the}\:{series}\:{T}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinix}}{{i}}\:\left({x}\neq\pm\pi\right). \\ $$$${Dirichlet}'{s}\:{test}\:{may}\:{be}\:{used}\:{to}\:{prove} \\ $$$${that}\:{T}\:{is}\:{uniformly}\:{convergent}\:{in} \\ $$$${an}\:{interval}\:{a}\leqslant{x}\leqslant{b}. \\ $$$${Suppose}\:{that}: \\ $$$$\left(\mathrm{1}\right)\:\left\{{a}_{{n}} \right\}\:{is}\:{a}\:{sequence}\:{of}\:{positive}\: \\ $$$${constants}\:{that}\:{are}\:{monotonic} \\ $$$${decreasing},{having}\:{a}\:{limit}\:{of}\:{zero}; \\ $$$$\left(\mathrm{2}\right)\:\exists{P}\:\left({constant}\right)\:{such}\:{that}\:{for} \\ $$$${a}\leqslant{x}\leqslant{b},\:\mid\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{r}} \left({x}\right)\mid<{P}\:\:,\forall{n}>{N}. \\ $$$${Then},\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} {u}_{{n}} \left({x}\right)\:{is}\: \\ $$$${uniformly}\:{convergent}\:{on}\:{the}\:{interval} \\ $$$${a}\leqslant{x}\leqslant{b}. \\ $$$${Let}\:{u}_{{i}} \left({x}\right)={sinix},\:{a}_{{i}} =\frac{\mathrm{1}}{{i}}\:\:\left({i}\in\mathbb{N}\right). \\ $$$$\left(\mathrm{1}\right){For}\:{the}\:{sequence}\:\left\{{a}_{{i}} \right\},\:{its}\:{terms}\: \\ $$$${are}\:{monotonic}\:{decreasing}\:{and} \\ $$$${positive}. \\ $$$$\underset{{i}\rightarrow\infty} {\mathrm{lim}}{a}_{{i}} =\underset{{i}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{i}}=\frac{\mathrm{1}}{\infty}=\mathrm{0}. \\ $$$$\left(\mathrm{2}\right){Suppose}\:\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\:{and}\:{define}\:{S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{i}} \left({x}\right). \\ $$$$\left({sin}\frac{{x}}{\mathrm{2}}\right){S}=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sinixsin}\frac{{x}}{\mathrm{2}}.\:\:\left(\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\right) \\ $$$${Since}\:−\mathrm{2}{sinixsin}\frac{{x}}{\mathrm{2}}={cos}\left({i}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}−{cos}\left({i}−\frac{\mathrm{1}}{\mathrm{2}}\right){x} \\ $$$$\Rightarrow{sinixsin}\frac{{x}}{\mathrm{2}}=\frac{−\mathrm{1}}{\mathrm{2}}\left\{{f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)\right\} \\ $$$${where}\:{f}\left({r}\right)={cos}\left({i}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}\:\:\:\left({i}\in\mathbb{N}\right). \\ $$$$\therefore{Ssin}\frac{{x}}{\mathrm{2}}=\frac{−\mathrm{1}}{\mathrm{2}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{{f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)\right\} \\ $$$$−\mathrm{2}{Ssin}\frac{{x}}{\mathrm{2}}={f}\left(\mathrm{1}\right)−{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{2}\right)−{f}\left(\mathrm{1}\right)+ \\ $$$${f}\left(\mathrm{3}\right)−{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{4}\right)−{f}\left(\mathrm{3}\right)+{f}\left(\mathrm{5}\right)−{f}\left(\mathrm{4}\right)+ \\ $$$$...+{f}\left({n}−\mathrm{3}\right)−{f}\left({n}−\mathrm{4}\right)+{f}\left({n}−\mathrm{2}\right)−{f}\left({n}−\mathrm{3}\right) \\ $$$$+{f}\left({n}−\mathrm{1}\right)−{f}\left({n}−\mathrm{2}\right)+{f}\left({n}\right)−{f}\left({n}−\mathrm{1}\right) \\ $$$$−\mathrm{2}{Ssin}\frac{{x}}{\mathrm{2}}={f}\left({n}\right)−{f}\left(\mathrm{0}\right) \\ $$$$\Rightarrow{S}=\frac{{f}\left(\mathrm{0}\right)−{f}\left({n}\right)}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}} \\ $$$${S}=\frac{{cos}\frac{{x}}{\mathrm{2}}−{cos}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}} \\ $$$$−\left({cos}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}−{cos}\frac{{x}}{\mathrm{2}}\right) \\ $$$$=−\left(−\mathrm{2}{sin}\frac{{n}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{2}}{xsin}\frac{{n}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{2}}{x}\right) \\ $$$$=\mathrm{2}{sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}{xsin}\frac{{nx}}{\mathrm{2}} \\ $$$$\therefore{S}=\frac{{sin}\frac{{nx}}{\mathrm{2}}{sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}}{{sin}\frac{{x}}{\mathrm{2}}}=\left(\frac{\mathrm{1}}{{sin}\frac{{x}}{\mathrm{2}}}\right){sin}\frac{{nx}}{\mathrm{2}}{sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}{x} \\ $$$$\therefore\mid{S}\mid=\mid\frac{\mathrm{1}}{{sin}\frac{{x}}{\mathrm{2}}}{sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}{sin}\frac{{nx}}{\mathrm{2}}\mid \\ $$$${Since}\:\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\leqslant\frac{{x}}{\mathrm{2}}\leqslant\frac{\pi}{\mathrm{4}}\Rightarrow{sin}\frac{{x}}{\mathrm{2}}\geqslant{sin}\frac{\mathrm{1}}{\mathrm{2}}\:{for}\:\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}. \\ $$$$\therefore\mid{S}\mid={cosec}\frac{{x}}{\mathrm{2}}\mid{sin}\frac{{nx}}{\mathrm{2}}{sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\mid \\ $$$${Now}\mid{sin}\frac{{u}}{\mathrm{2}}\mid<\mathrm{1}\:{for}\:\forall{u}\in\mathbb{R} \\ $$$$\Rightarrow{cosec}\frac{{x}}{\mathrm{2}}\mid{sin}\frac{{nx}}{\mathrm{2}}{sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\mid<\frac{\mathrm{1}}{{sin}\frac{{x}}{\mathrm{2}}}\:\forall{n}>\mathrm{1} \\ $$$$\Rightarrow\:\mid{S}\mid<\frac{\mathrm{1}}{{sin}\frac{{x}}{\mathrm{2}}}\:\:\forall{n}>\mathrm{1}\:\left({N}=\mathrm{1}\right) \\ $$$${max}\left({sin}\frac{{x}}{\mathrm{2}}\right)\:{for}\:\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\:{is}\:{sin}\frac{\pi}{\mathrm{4}}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\mid{S}\mid<\sqrt{\mathrm{2}}\:\Rightarrow{P}=\sqrt{\mathrm{2}}\:{for}\:\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}. \\ $$$${So},\:{conditions}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right)\:{are}\:{satisfied}. \\ $$$${Hence},\:{by}\:{Dirichlet}'{s}\:{test}, \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinix}}{{i}}\:{is}\:{uniformly}\:{convergent} \\ $$$${in}\:{the}\:{interval}\:\mathrm{1}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}.\:{Hence},\:{if}\:{x}=\mathrm{1}, \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sini}}{{i}}\:{is}\:{uniformly}\:{convergent}. \\ $$$$ \\ $$$$\left({I}\:{tried}\:{part}\:\left(\mathrm{2}\right)\:{but}\:{I}\:{know}\:{the}\:{approach}\right. \\ $$$$\left.{is}\:{incorrect}.\right) \\ $$

Commented by prakash jain last updated on 26/Nov/15

Innovative!  The series in question could start  with sinisin 0.5 (x=1).  However you have proved more generic case.  Your approach looks correct to me.  Why do you think it is wrong?

$$\mathrm{Innovative}! \\ $$$$\mathrm{The}\:\mathrm{series}\:\mathrm{in}\:\mathrm{question}\:\mathrm{could}\:\mathrm{start} \\ $$$$\mathrm{with}\:\mathrm{sin}{i}\mathrm{sin}\:\mathrm{0}.\mathrm{5}\:\left({x}=\mathrm{1}\right). \\ $$$$\mathrm{However}\:\mathrm{you}\:\mathrm{have}\:\mathrm{proved}\:\mathrm{more}\:\mathrm{generic}\:\mathrm{case}. \\ $$$$\mathrm{Your}\:\mathrm{approach}\:\mathrm{looks}\:\mathrm{correct}\:\mathrm{to}\:\mathrm{me}. \\ $$$$\mathrm{Why}\:\mathrm{do}\:\mathrm{you}\:\mathrm{think}\:\mathrm{it}\:\mathrm{is}\:\mathrm{wrong}? \\ $$

Commented by Yozzi last updated on 26/Nov/15

This area is new to me and I haven′t  mastered method of proof yet. But  I′m glad you see no issues with it :).

$${This}\:{area}\:{is}\:{new}\:{to}\:{me}\:{and}\:{I}\:{haven}'{t} \\ $$$${mastered}\:{method}\:{of}\:{proof}\:{yet}.\:{But} \\ $$$$\left.{I}'{m}\:{glad}\:{you}\:{see}\:{no}\:{issues}\:{with}\:{it}\::\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com