Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 27224 by mrW1 last updated on 03/Jan/18

Commented by mrW1 last updated on 03/Jan/18

The friction coefficient betweem the  blocks is μ.  1) find the tension in the thread.  2) what is the inclination angle such  that the tension in thread is maximum?

$${The}\:{friction}\:{coefficient}\:{betweem}\:{the} \\ $$$${blocks}\:{is}\:\mu. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{tension}\:{in}\:{the}\:{thread}. \\ $$$$\left.\mathrm{2}\right)\:{what}\:{is}\:{the}\:{inclination}\:{angle}\:{such} \\ $$$${that}\:{the}\:{tension}\:{in}\:{thread}\:{is}\:{maximum}? \\ $$

Commented by mrW1 last updated on 03/Jan/18

See also Q27202

$${See}\:{also}\:{Q}\mathrm{27202} \\ $$

Commented by ajfour last updated on 03/Jan/18

Commented by ajfour last updated on 03/Jan/18

Granted block slides:  T=Nsin θ−μmgcos^2 θ  =(mgcos θ)sin θ−μmgcos^2 θ  (dT/dθ)=mg(cos 2θ+μsin 2θ)  =0  for  tan 2θ=−(1/μ) ; for this value  (dT/dθ^2 )=mg(−2sin 2θ+2μcos 2θ)        =mg(−(2/(√(1+μ^2 )))−((2μ^2 )/(√(1+μ^2 ))))       =−2mg(√(1+μ^2 ))  < 0        hence maximum tension for     θ=(π/2)−(1/2)tan^(−1) ((1/μ)) =α (say).  T_(max) =((mg)/2)(sin 2α−2μcos^2 α)           =((mg)/2)[sin 2α−μ(1+cos 2α)]          =((mg)/2)[(1/(√(1+μ^2 )))−μ(1−(μ/(√(1+μ^2 ))))]          =((mg)/2)[(√(1+μ^2 ))−μ] .

$${Granted}\:{block}\:{slides}: \\ $$$${T}={N}\mathrm{sin}\:\theta−\mu{mg}\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$=\left({mg}\mathrm{cos}\:\theta\right)\mathrm{sin}\:\theta−\mu{mg}\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\frac{{dT}}{{d}\theta}={mg}\left(\mathrm{cos}\:\mathrm{2}\theta+\mu\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$$=\mathrm{0}\:\:{for}\:\:\mathrm{tan}\:\mathrm{2}\theta=−\frac{\mathrm{1}}{\mu}\:;\:{for}\:{this}\:{value} \\ $$$$\frac{{dT}}{{d}\theta^{\mathrm{2}} }={mg}\left(−\mathrm{2sin}\:\mathrm{2}\theta+\mathrm{2}\mu\mathrm{cos}\:\mathrm{2}\theta\right) \\ $$$$\:\:\:\:\:\:={mg}\left(−\frac{\mathrm{2}}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}−\frac{\mathrm{2}\mu^{\mathrm{2}} }{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}\right) \\ $$$$\:\:\:\:\:=−\mathrm{2}{mg}\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\:\:<\:\mathrm{0}\: \\ $$$$\:\:\:\:\:{hence}\:{maximum}\:{tension}\:{for} \\ $$$$\:\:\:\theta=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mu}\right)\:=\alpha\:\left({say}\right). \\ $$$${T}_{{max}} =\frac{{mg}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{2}\alpha−\mathrm{2}\mu\mathrm{cos}\:^{\mathrm{2}} \alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{{mg}}{\mathrm{2}}\left[\mathrm{sin}\:\mathrm{2}\alpha−\mu\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\alpha\right)\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{{mg}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}−\mu\left(\mathrm{1}−\frac{\mu}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{{mg}}{\mathrm{2}}\left[\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }−\mu\right]\:. \\ $$

Answered by mrW1 last updated on 03/Jan/18

Q1:  N=mg cos θ  f=μN=μmg cos θ    case 1: mg sin θ < f=μmg cos θ  or tan θ<μ or θ<α=tan^(−1) μ  block m rests on block M,  ⇒T=0    case 2: θ≥α=tan^(−1) μ  T=N sin θ−f cos θ  T=mg cos θ sin θ−μmg cos^2  θ  =((mg)/2)(sin 2θ−μ 2cos^2  θ)  =((mg)/2)(sin 2θ−μ cos 2θ−μ)  =((mg)/2)[(√(1+μ^2 )) ((1/(√(1+μ^2 ))) sin 2θ−(μ/(√(1+μ^2 ))) cos 2θ)−μ  =((mg)/2)[(√(1+μ^2 )) (cos α sin 2θ−sin α cos 2θ)−μ]  T=((mg)/2)[(√(1+μ^2 )) sin (2θ−α)−μ]  with α=tan^(−1) μ    Q2:  T is maximum if 2θ−α=(π/2)  or θ_m =(π/4)+(α/2)=(π/4)+(1/2)tan^(−1) μ=(π/2)−(1/2) tan^(−1) (1/μ)  Example: μ=0.3, θ_m =53.3°

$${Q}\mathrm{1}: \\ $$$${N}={mg}\:\mathrm{cos}\:\theta \\ $$$${f}=\mu{N}=\mu{mg}\:\mathrm{cos}\:\theta \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:{mg}\:\mathrm{sin}\:\theta\:<\:{f}=\mu{mg}\:\mathrm{cos}\:\theta \\ $$$${or}\:\mathrm{tan}\:\theta<\mu\:{or}\:\theta<\alpha=\mathrm{tan}^{−\mathrm{1}} \mu \\ $$$${block}\:{m}\:{rests}\:{on}\:{block}\:{M}, \\ $$$$\Rightarrow{T}=\mathrm{0} \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:\theta\geqslant\alpha=\mathrm{tan}^{−\mathrm{1}} \mu \\ $$$${T}={N}\:\mathrm{sin}\:\theta−{f}\:\mathrm{cos}\:\theta \\ $$$${T}={mg}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta−\mu{mg}\:\mathrm{cos}^{\mathrm{2}} \:\theta \\ $$$$=\frac{{mg}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{2}\theta−\mu\:\mathrm{2cos}^{\mathrm{2}} \:\theta\right) \\ $$$$=\frac{{mg}}{\mathrm{2}}\left(\mathrm{sin}\:\mathrm{2}\theta−\mu\:\mathrm{cos}\:\mathrm{2}\theta−\mu\right) \\ $$$$=\frac{{mg}}{\mathrm{2}}\left[\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}\:\mathrm{sin}\:\mathrm{2}\theta−\frac{\mu}{\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }}\:\mathrm{cos}\:\mathrm{2}\theta\right)−\mu\right. \\ $$$$=\frac{{mg}}{\mathrm{2}}\left[\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\:\left(\mathrm{cos}\:\alpha\:\mathrm{sin}\:\mathrm{2}\theta−\mathrm{sin}\:\alpha\:\mathrm{cos}\:\mathrm{2}\theta\right)−\mu\right] \\ $$$${T}=\frac{{mg}}{\mathrm{2}}\left[\sqrt{\mathrm{1}+\mu^{\mathrm{2}} }\:\mathrm{sin}\:\left(\mathrm{2}\theta−\alpha\right)−\mu\right] \\ $$$${with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \mu \\ $$$$ \\ $$$${Q}\mathrm{2}: \\ $$$${T}\:{is}\:{maximum}\:{if}\:\mathrm{2}\theta−\alpha=\frac{\pi}{\mathrm{2}} \\ $$$${or}\:\theta_{{m}} =\frac{\pi}{\mathrm{4}}+\frac{\alpha}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \mu=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu} \\ $$$${Example}:\:\mu=\mathrm{0}.\mathrm{3},\:\theta_{{m}} =\mathrm{53}.\mathrm{3}° \\ $$

Commented by Tinkutara last updated on 04/Jan/18

Thank you!

Commented by mrW1 last updated on 03/Jan/18

https://play.google.com/store/apps/details?id=com.iudesk.android.photo.editor

Commented by mrW1 last updated on 03/Jan/18

I use Photo Editor.

$${I}\:{use}\:\boldsymbol{{Photo}}\:\boldsymbol{{Editor}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com