All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 27280 by kemhoney78@gmail.com last updated on 04/Jan/18
Ifforarealnumbery,[y]isthegreatestintegerlessthanorequaltoy,thenthevalueoftheintegeral∫3π/2π/2[2sinx]dxis
Commented by abdo imad last updated on 04/Jan/18
letdothechangementx=π2+t∫π23π2[2sinx]dx=∫0π[2cosx]dx(2cosx=t⇔x=arcos(t2))==∫2−2[t](−121−t24)dt=12∫−22[t]1−t24dt=12∫−2−1(...)dt+12∫−10(...)dt+12∫01(...)dt+12∫12(...)dt=−∫−2−1dt1−t24−12∫−10dt1−t24+0+12∫12dt1−t24dt=−∫21−dt1−t24+12∫12dt1−t24−12∫10−dt1−t24=−∫12dt1−t24+12∫12dt1−t22−12∫01dt1−t24=−12∫12dt1−t22−12∫01dt1−t24dt=−12∫02dt1−t24dt=[arcos(t2)]02=arcos(1)−arcos0=−π2
Answered by ajfour last updated on 04/Jan/18
I=∫π/25π/6dx+∫5π/6π(0)dx+∫π7π/6(−1)dx+∫7π/63π/2(−2)dx=π3+0−π6−2π3=−π2.
Commented by ajfour last updated on 04/Jan/18
Terms of Service
Privacy Policy
Contact: info@tinkutara.com