Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 27280 by kemhoney78@gmail.com last updated on 04/Jan/18

If for a real number y, [y] is the greatest  integer less than or equal to y, then the  value of the integeral ∫_(π/2) ^(3π/2) [2 sin x]dx is

Ifforarealnumbery,[y]isthegreatestintegerlessthanorequaltoy,thenthevalueoftheintegeral3π/2π/2[2sinx]dxis

Commented by abdo imad last updated on 04/Jan/18

let do the changement x= (π/2) +t  ∫_(π/2) ^((3π)/2) [2sinx]dx= ∫_0 ^π [2 cosx]dx ( 2cosx=t ⇔ x =arcos((t/2)))=  =∫_2 ^(−2) [t](−(1/(2(√(1−(t^2 /4))))))dt= (1/2) ∫_(−2) ^2      (([t])/(√(1−(t^2 /4)))) dt  =(1/2) ∫_(−2) ^(−1) (...)dt +(1/2) ∫_(−1) ^0 (...)dt  +(1/2) ∫_0 ^1 (...)dt +(1/2) ∫_1 ^2 (...)dt  =−∫_(−2) ^(−1 )  (dt/(√(1−(t^2 /4)))) −(1/2) ∫_(−1) ^0  (dt/(√(1−(t^2 /4)))) +0+(1/2)∫_1 ^2 (dt/(√(1−(t^2 /4))))dt  =−∫_2 ^1 ((−dt)/(√(1−(t^2 /4)))) +(1/2)∫_1 ^(2 ) (dt/(√(1−(t^2 /4)))) −(1/2) ∫_1 ^0 ((−dt)/(√(1−(t^2 /4))))  =−∫_1 ^2 (dt/(√(1−(t^2 /4))))  +(1/2) ∫_1 ^2 (dt/(√(1−(t^2 /2)))) −(1/2) ∫_0 ^1 (dt/(√(1−(t^2 /4))))  =−(1/2) ∫_1 ^2  (dt/(√(1−(t^2 /2)))) −(1/2) ∫_0 ^1  (dt/(√(1−(t^2 /4))))dt  =−(1/2) ∫_0 ^2 (dt/(√(1−(t^2 /4)))) dt=[ arcos((t/2))]_0 ^2   =arcos(1)−arcos0= −(π/2)

letdothechangementx=π2+tπ23π2[2sinx]dx=0π[2cosx]dx(2cosx=tx=arcos(t2))==22[t](121t24)dt=1222[t]1t24dt=1221(...)dt+1210(...)dt+1201(...)dt+1212(...)dt=21dt1t241210dt1t24+0+1212dt1t24dt=21dt1t24+1212dt1t241210dt1t24=12dt1t24+1212dt1t221201dt1t24=1212dt1t221201dt1t24dt=1202dt1t24dt=[arcos(t2)]02=arcos(1)arcos0=π2

Answered by ajfour last updated on 04/Jan/18

I=∫_(π/2) ^(  5π/6) dx+∫_(5π/6) ^(  π) (0)dx+∫_π ^(  7π/6) (−1)dx               +∫_(7π/6) ^(  3π/2) (−2)dx   =(π/3)+0−(π/6)−((2π)/3) =−(π/2) .

I=π/25π/6dx+5π/6π(0)dx+π7π/6(1)dx+7π/63π/2(2)dx=π3+0π62π3=π2.

Commented by ajfour last updated on 04/Jan/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com