All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 27294 by iy last updated on 04/Jan/18
∫tanx1/et1+t2dt+∫cotx1/e1t(1+t2)dt=
Commented by prakash jain last updated on 05/Jan/18
(A)∫1/etanxt1+t2dt=12[ln(1+tan2x)−ln(1+1e2)]=12[ln(sec2x)−ln(1+1e2)]=ln(secx)−12ln(1+1e2)∫1/ecotx1t(1+t2)dt∫1/ecotx(tt2−t1+t2)dt=[lnt−12ln(1+t2)]1/ecotx(B)=lncotx−12ln(1+cot2x)−ln1e+12ln(1+1e2)=lncotx−lncosecx−ln1e+12ln(1+1e2)A+Blnsecx+lncotx−lncosecx+1=ln(secx⋅cotx)−lncosecx+1=lncosecx−lncosecx+1=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com