Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 57138 by mustakim420 last updated on 30/Mar/19

The value of the integral  ∫_( 0) ^π    (1/(a^2 −2a cos x+1)) dx  (a >1)  is

Thevalueoftheintegral π01a22acosx+1dx(a>1)is

Commented bymaxmathsup by imad last updated on 30/Mar/19

let  f(a) =∫_0 ^π      (dx/(a^2 −2acosx +1)) ⇒f(a) =_(tan((x/2))=t)   ∫_0 ^(+∞)    ((2dt)/((1+t^2 )(a^2  −2a((1−t^2 )/(1+t^2 )) +1)))  =2 ∫_0 ^∞     (dt/((1+t^2 )a^2  −2a(1−t^2 )+1+t^2 )) =2 ∫_0 ^∞    (dt/(a^2 t^2  +a^2  −2a+2at^2  +1+t^2 ))  =2 ∫_0 ^∞    (dt/((a^2  +2a+1)t^(2 )  +a^2 −2a+1)) =2 ∫_0 ^∞     (dt/((a+1)^2 t^2  +(a−1)^2 ))  changement (a+1)t =(a−1)u  give  f(a) =2  ∫_0 ^∞     (1/((a−1)^2 (1+u^2 ))) ((a−1)/(a+1)) du =(2/(a^2 −1)) [arctan(u)]_0 ^(+∞)   =(2/(a^2 −1)) (π/2) =(π/(a^2 −1))  ⇒f(a) =(π/(a^2  −1))  with a>1 .

letf(a)=0πdxa22acosx+1f(a)=tan(x2)=t0+2dt(1+t2)(a22a1t21+t2+1) =20dt(1+t2)a22a(1t2)+1+t2=20dta2t2+a22a+2at2+1+t2 =20dt(a2+2a+1)t2+a22a+1=20dt(a+1)2t2+(a1)2 changement(a+1)t=(a1)ugive f(a)=201(a1)2(1+u2)a1a+1du=2a21[arctan(u)]0+ =2a21π2=πa21f(a)=πa21witha>1.

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19

∫(dx/(a^2 +1−2acosx))  (1/(2a))∫(dx/(k−cosx))  [k=((a^2 +1)/(2a))]  t=tan(x/2)      2dt=sec^2 (x/2)dx  dx=((2dt)/(1+t^2 ))  (1/(2a))∫((2dt)/((1+t^2 )(k−((1−t^2 )/(1+t^2 )))))  (1/a)∫(dt/(k+kt^2 −1+t^2 ))  (1/a)∫(dt/((k−1)+t^2 (k+1)))  (1/(a(k+1)))∫(dt/(((k−1)/(k+1))+t^2 ))  (1/(a(((a^2 +1)/(2a))+1)))×(1/(√((k−1)/(k+1))))tan^(−1) ((t/(√((k−1)/(k+1)))))    k=((a^2 +1)/(2a))  ((k−1)/(k+1))=((a^2 +1+2a)/(a^2 +1−2a))=(((a+1)^2 )/((a−1)^2 ))  (√((k−1)/(k+1))) =((a+1)/(a−1))  (2/((a+1)^2 ))×(1/((a−1)/(a+1)))∣tan^(−1) (((tan(x/2))/((a−1)/(a+1))))∣_0 ^π   (2/(a^2 −1))×[tan^(−1) (∞)−0]  (2/(a^2 −1))×(π/2)→(π/(a^2 −1))

dxa2+12acosx 12adxkcosx[k=a2+12a] t=tanx22dt=sec2x2dx dx=2dt1+t2 12a2dt(1+t2)(k1t21+t2) 1adtk+kt21+t2 1adt(k1)+t2(k+1) 1a(k+1)dtk1k+1+t2 1a(a2+12a+1)×1k1k+1tan1(tk1k+1) k=a2+12a k1k+1=a2+1+2aa2+12a=(a+1)2(a1)2 k1k+1=a+1a1 2(a+1)2×1a1a+1tan1(tanx2a1a+1)0π 2a21×[tan1()0] 2a21×π2πa21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com