All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 57138 by mustakim420 last updated on 30/Mar/19
Thevalueoftheintegral ∫π01a2−2acosx+1dx(a>1)is
Commented bymaxmathsup by imad last updated on 30/Mar/19
letf(a)=∫0πdxa2−2acosx+1⇒f(a)=tan(x2)=t∫0+∞2dt(1+t2)(a2−2a1−t21+t2+1) =2∫0∞dt(1+t2)a2−2a(1−t2)+1+t2=2∫0∞dta2t2+a2−2a+2at2+1+t2 =2∫0∞dt(a2+2a+1)t2+a2−2a+1=2∫0∞dt(a+1)2t2+(a−1)2 changement(a+1)t=(a−1)ugive f(a)=2∫0∞1(a−1)2(1+u2)a−1a+1du=2a2−1[arctan(u)]0+∞ =2a2−1π2=πa2−1⇒f(a)=πa2−1witha>1.
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19
∫dxa2+1−2acosx 12a∫dxk−cosx[k=a2+12a] t=tanx22dt=sec2x2dx dx=2dt1+t2 12a∫2dt(1+t2)(k−1−t21+t2) 1a∫dtk+kt2−1+t2 1a∫dt(k−1)+t2(k+1) 1a(k+1)∫dtk−1k+1+t2 1a(a2+12a+1)×1k−1k+1tan−1(tk−1k+1) k=a2+12a k−1k+1=a2+1+2aa2+1−2a=(a+1)2(a−1)2 k−1k+1=a+1a−1 2(a+1)2×1a−1a+1∣tan−1(tanx2a−1a+1)∣0π 2a2−1×[tan−1(∞)−0] 2a2−1×π2→πa2−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com