All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27342 by abdo imad last updated on 05/Jan/18
findf(x)=∫0∞e−x(1+t2)1+t2dtintermsofxwithx⩾0andcalculate∫0∞e−t2dt.
Commented by abdo imad last updated on 08/Jan/18
afterverifyingthatfisderivablein[0,∝[f,(x)=∫0∞∂∂x(e−x(1+t2)1+t2)dt=∫0∞−e−x(1+t2)dt=−e−x∫0∞e−xt2dtthech.xt=ugivef,(x)=−e−x∫0∞e−u2dux=−e−xx∫0∞e−u2du=−π2e−xx(x>0)⇒f(x)=−π2∫0xe−ttdt+λafterthatweusethech.t=uf(x)=−π2∫0xe−u2u2udu+λ=λ−π∫0xe−u2dulimx−>∝f(x)=0=λ−π∫0∝e−u2du=λ−π2⇒λ=π2finallyf(x)=π2−π∫0xe−u2duwehavealotsofmethodtoprovethat∫0∞e−x2dx=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com