Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 27380 by abdo imad last updated on 05/Jan/18

find the value of S_n =  Σ_(k=0) ^(k=n)    (((−1)^k  C_n ^k )/(2k+1))  .

$${find}\:{the}\:{value}\:{of}\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{k}={n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:\:. \\ $$

Commented by abdo imad last updated on 07/Jan/18

let introduce the polynomial p(x)= Σ_(k=0) ^(k=n)   (((−1)^k  C_n ^k )/(2k+1)) x^(2k+1)   S_n =p(1)  we have p^, (x)= Σ_(k=0) ^n  C_n ^k  (−1)^k x^(2k)   = Σ_(k=0) ^(k=n)  C_n ^k  (−x^2 )^k = (1−x^2 )^n    p(x)= ∫_0 ^x (1−t^2 )^n dt +λ  and λ=p(0)=0  S_n = ∫_0 ^1 (1−t^2 )^n dt  and the ch. t=sinx give  S_n = ∫_0 ^(π/2) (1−sin^2 x)^n cosxdx=∫_0 ^(π/2) cosx^(2n+1) dx   let put  I_n = ∫_0 ^(π/2) (cosx)^n dx  (wallis integral) integration by parts   give I_n = ((n−1)/n) I_(n−2)    ⇒  I_(2n+1) = ((2n)/(2n+1)) I_(2n−1)   Π_(k=1) ^n  I_(2k+1) = Π_(k=1) ^n  ((2k)/(2k+1)) Π_(k=1) ^n  I_(2k−1)   ⇒ I_(2n+1) = ((2^n  (n!))/(3.5....(2n+1))) I_1     but  I_1 = 1  S_n   = ((2^(2n)  (n!)^2 )/((2n+1)!)).

$${let}\:{introduce}\:{the}\:{polynomial}\:{p}\left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{k}={n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{x}^{\mathrm{2}{k}+\mathrm{1}} \\ $$$${S}_{{n}} ={p}\left(\mathrm{1}\right)\:\:{we}\:{have}\:{p}^{,} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} {x}^{\mathrm{2}{k}} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{k}={n}} \:{C}_{{n}} ^{{k}} \:\left(−{x}^{\mathrm{2}} \right)^{{k}} =\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \: \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:+\lambda\:\:{and}\:\lambda={p}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${S}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:\:{and}\:{the}\:{ch}.\:{t}={sinx}\:{give} \\ $$$${S}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)^{{n}} {cosxdx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cosx}^{\mathrm{2}{n}+\mathrm{1}} {dx}\:\:\:{let}\:{put} \\ $$$${I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cosx}\right)^{{n}} {dx}\:\:\left({wallis}\:{integral}\right)\:{integration}\:{by}\:{parts}\: \\ $$$${give}\:{I}_{{n}} =\:\frac{{n}−\mathrm{1}}{{n}}\:{I}_{{n}−\mathrm{2}} \:\:\:\Rightarrow\:\:{I}_{\mathrm{2}{n}+\mathrm{1}} =\:\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}\:{I}_{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{I}_{\mathrm{2}{k}+\mathrm{1}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{k}}{\mathrm{2}{k}+\mathrm{1}}\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{I}_{\mathrm{2}{k}−\mathrm{1}} \\ $$$$\Rightarrow\:{I}_{\mathrm{2}{n}+\mathrm{1}} =\:\frac{\mathrm{2}^{{n}} \:\left({n}!\right)}{\mathrm{3}.\mathrm{5}....\left(\mathrm{2}{n}+\mathrm{1}\right)}\:{I}_{\mathrm{1}} \:\:\:\:{but}\:\:{I}_{\mathrm{1}} =\:\mathrm{1} \\ $$$${S}_{{n}} \:\:=\:\frac{\mathrm{2}^{\mathrm{2}{n}} \:\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com