All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 27380 by abdo imad last updated on 05/Jan/18
findthevalueofSn=∑k=0k=n(−1)kCnk2k+1.
Commented by abdo imad last updated on 07/Jan/18
letintroducethepolynomialp(x)=∑k=0k=n(−1)kCnk2k+1x2k+1Sn=p(1)wehavep,(x)=∑k=0nCnk(−1)kx2k=∑k=0k=nCnk(−x2)k=(1−x2)np(x)=∫0x(1−t2)ndt+λandλ=p(0)=0Sn=∫01(1−t2)ndtandthech.t=sinxgiveSn=∫0π2(1−sin2x)ncosxdx=∫0π2cosx2n+1dxletputIn=∫0π2(cosx)ndx(wallisintegral)integrationbypartsgiveIn=n−1nIn−2⇒I2n+1=2n2n+1I2n−1∏k=1nI2k+1=∏k=1n2k2k+1∏k=1nI2k−1⇒I2n+1=2n(n!)3.5....(2n+1)I1butI1=1Sn=22n(n!)2(2n+1)!.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com