All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 27382 by abdo imad last updated on 05/Jan/18
resolveinsideC(z−iz+i)n+(z+iz−i)n=2cosθand0<θ<π.ninteger.
Answered by sma3l2996 last updated on 05/Jan/18
(z−iz+i)n+(z−iz+i)−n−2cosθ=0 (z−iz+i)2n+1−2(z−iz+i)ncosθ=0 ((z−iz+i)n)2−2(z−iz+i)ncosθ+(cosθ)2+sin2θ=0 ((z−iz+i)n−cosθ)2+sin2θ=0 (z−iz+i)n−cosθ=(−sin2θ)=+−isinθ=isinθ(because0⩽θ⩽π) so(z−iz+i)n=cosθ+isinθ=eiθ z−iz+i=eiθn⇔z−i−(z+i)eiθn=0⇔z(1−eiθn)=i(1+eiθn) z=i1+eiθn1−eiθn
Terms of Service
Privacy Policy
Contact: info@tinkutara.com