All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 27384 by abdo imad last updated on 05/Jan/18
letgivep(x)=(1+ix1−ix)n−1+itanα1−itanαfactorizep(x)insideC[x].
Commented by abdo imad last updated on 07/Jan/18
rootsofp(x)p(x)=0⇔(1+ix1−ix)n=1+itanα1−itanα=cosα+isinαcosα−isinα=ei(2α)letput1+ix1−ix=tsop(x)=0⇔tn=ei(2α)wichhaveforsolutionstk=ei2(α+kπ)1nandk∈[[0,n−1]]but1+ix1−ix=tk⇔1+ix=(1−ix)tk⇔ix(1+tk)=tk−1ix=tk−11+tk⇔x=−itk−11+tk=i1−tk1+tksothecomplexwichverifyp(x)=0arexk=i1−tk1+tkandk∈[[0,n−1]]butxk=i1−ei2α+kπn1+ei2α+kπn=i1−cos(2α+kπn)−isin(2α+kπn)1+cos(2α+kπn)+isin(2α+kπn)xk=tan(α+kπn)withkfrom[[0,n−1]]sop(x)=λ∏k=0n−1(x−tan(α+kπn)).
Answered by sma3l2996 last updated on 06/Jan/18
p(x)=(i(−i+x)−i(i+x))n−cosα+isinαcosα−isinα=(−(−2i+i+x)i+x)n−eiαe−iαp(x)=(−1)n(1−2i+x)n−e2iαp(x)=(−1)n∑nk=0(2i+x)knCk−e2iα
Terms of Service
Privacy Policy
Contact: info@tinkutara.com