Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 27384 by abdo imad last updated on 05/Jan/18

let give  p(x)= (((1+ix)/(1−ix)))^n − ((1+itanα )/(1−itanα))  factorize p(x) inside  C[x].

$${let}\:{give}\:\:{p}\left({x}\right)=\:\left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{n}} −\:\frac{\mathrm{1}+{itan}\alpha\:}{\mathrm{1}−{itan}\alpha}\:\:{factorize}\:{p}\left({x}\right)\:{inside} \\ $$$${C}\left[{x}\right]. \\ $$

Commented by abdo imad last updated on 07/Jan/18

roots of p(x)    p(x)=0⇔  (((1+ix)/(1−ix)) )^n = ((1+itanα)/(1−itanα))=((cosα +isinα)/(cosα −isinα)) =e^(i(2α))   let put  ((1+ix)/(1−ix))= t so p(x)=0⇔ t^n = e^(i(2α))  wich have for solutions  t_k =e^(i2(α+kπ)(1/n))     and  k∈[[0,n−1]] but ((1+ix)/(1−ix))=t_k   ⇔ 1+ix=(1−ix)t_k  ⇔ ix(1+t_k )=t_k  −1  ix =((t_k −1)/(1+t_k ))    ⇔x =−i((t_k −1)/(1+tk)) =i ((1−t_k )/(1+t_k )) so the complex wich   verify p(x)=0 are x_k = i ((1−t_k )/(1+t_k ))    and k∈[[0,n−1]]  but x_k = i ((1−e^(i2((α+kπ)/n)) )/(1+ e^(i2((α+kπ)/n)) )) =i((1−cos(2((α+kπ)/n)) −i sin(2((α+kπ)/n)))/(1+cos(2((α+kπ)/n))+isin(2((α+kπ)/n))))  x_(k ) =tan(((α+kπ)/n))    with k from[[0,n−1]]  so p(x)= λ  Π_(k=0) ^(n−1) (x−tan(((α+kπ)/n)))  .

$${roots}\:{of}\:{p}\left({x}\right)\:\: \\ $$$${p}\left({x}\right)=\mathrm{0}\Leftrightarrow\:\:\left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\:\right)^{{n}} =\:\frac{\mathrm{1}+{itan}\alpha}{\mathrm{1}−{itan}\alpha}=\frac{{cos}\alpha\:+{isin}\alpha}{{cos}\alpha\:−{isin}\alpha}\:={e}^{{i}\left(\mathrm{2}\alpha\right)} \\ $$$${let}\:{put}\:\:\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}=\:{t}\:{so}\:{p}\left({x}\right)=\mathrm{0}\Leftrightarrow\:{t}^{{n}} =\:{e}^{{i}\left(\mathrm{2}\alpha\right)} \:{wich}\:{have}\:{for}\:{solutions} \\ $$$${t}_{{k}} ={e}^{{i}\mathrm{2}\left(\alpha+{k}\pi\right)\frac{\mathrm{1}}{{n}}} \:\:\:\:{and}\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:{but}\:\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}={t}_{{k}} \\ $$$$\Leftrightarrow\:\mathrm{1}+{ix}=\left(\mathrm{1}−{ix}\right){t}_{{k}} \:\Leftrightarrow\:{ix}\left(\mathrm{1}+{t}_{{k}} \right)={t}_{{k}} \:−\mathrm{1} \\ $$$${ix}\:=\frac{{t}_{{k}} −\mathrm{1}}{\mathrm{1}+{t}_{{k}} }\:\:\:\:\Leftrightarrow{x}\:=−{i}\frac{{t}_{{k}} −\mathrm{1}}{\mathrm{1}+{tk}}\:={i}\:\frac{\mathrm{1}−{t}_{{k}} }{\mathrm{1}+{t}_{{k}} }\:{so}\:{the}\:{complex}\:{wich}\: \\ $$$${verify}\:{p}\left({x}\right)=\mathrm{0}\:{are}\:{x}_{{k}} =\:{i}\:\frac{\mathrm{1}−{t}_{{k}} }{\mathrm{1}+{t}_{{k}} }\:\:\:\:{and}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$${but}\:{x}_{{k}} =\:{i}\:\frac{\mathrm{1}−{e}^{{i}\mathrm{2}\frac{\alpha+{k}\pi}{{n}}} }{\mathrm{1}+\:{e}^{{i}\mathrm{2}\frac{\alpha+{k}\pi}{{n}}} }\:={i}\frac{\mathrm{1}−{cos}\left(\mathrm{2}\frac{\alpha+{k}\pi}{{n}}\right)\:−{i}\:{sin}\left(\mathrm{2}\frac{\alpha+{k}\pi}{{n}}\right)}{\mathrm{1}+{cos}\left(\mathrm{2}\frac{\alpha+{k}\pi}{{n}}\right)+{isin}\left(\mathrm{2}\frac{\alpha+{k}\pi}{{n}}\right)} \\ $$$${x}_{{k}\:} ={tan}\left(\frac{\alpha+{k}\pi}{{n}}\right)\:\:\:\:{with}\:{k}\:{from}\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$${so}\:{p}\left({x}\right)=\:\lambda\:\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{tan}\left(\frac{\alpha+{k}\pi}{{n}}\right)\right)\:\:. \\ $$

Answered by sma3l2996 last updated on 06/Jan/18

p(x)=(((i(−i+x))/(−i(i+x))))^n −((cosα+isinα)/(cosα−isinα))=(((−(−2i+i+x))/(i+x)))^n −(e^(iα) /e^(−iα) )  p(x)=(−1)^n (1−(2/(i+x)))^n −e^(2iα)   p(x)=(−1)^n Σ_(k=0) ^n ((2/(i+x)))^k ^n C_k −e^(2iα)

$${p}\left({x}\right)=\left(\frac{{i}\left(−{i}+{x}\right)}{−{i}\left({i}+{x}\right)}\right)^{{n}} −\frac{{cos}\alpha+{isin}\alpha}{{cos}\alpha−{isin}\alpha}=\left(\frac{−\left(−\mathrm{2}{i}+{i}+{x}\right)}{{i}+{x}}\right)^{{n}} −\frac{{e}^{{i}\alpha} }{{e}^{−{i}\alpha} } \\ $$$${p}\left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{1}−\frac{\mathrm{2}}{{i}+{x}}\right)^{{n}} −{e}^{\mathrm{2}{i}\alpha} \\ $$$${p}\left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{2}}{{i}+{x}}\right)^{{k}} \:^{{n}} {C}_{{k}} −{e}^{\mathrm{2}{i}\alpha} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com