Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27410 by math1967 last updated on 06/Jan/18

∫_0 ^∞ ((sinxdx)/x)

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{sinxdx}}{{x}} \\ $$

Commented by math1967 last updated on 07/Jan/18

Thank you sir

$${Thank}\:{you}\:{sir} \\ $$

Commented by abdo imad last updated on 06/Jan/18

let introduce the fonction f(t)= ∫_0 ^∞ ((sinx)/x) e^(−tx) dx with t≥0  after verifying that f is derivable we have  f^′ (t)= −∫_0 ^∞ sinx e^(−tx) dx=−Im(∫_0 ^∞ e^((i−t)x) dx)  =−[ (1/(i−t)) e^((i−t)x)  ]_(x=0) ^(x−>∝) = (1/(i−t)) =((i+t)/(−1−t^2 ))=−(t/(1+t^2 )) −(i/(1+t^2 ))  ⇒f^′ (t)= −(1/(1+t^2 ))  ⇒f(t)=λ−arctan(t)and due to f continue  ∃ M>0//f(t)≤M∫_0 ^∞  e^(−tx) dx=_(t−>∝so) (M/t)−>0  so λ=(π/2) and f(t)=(π/2) −arctan(t)  ∫_0 ^∞ ((sinx)/x)=f(0)=(π/2)  .

$${let}\:{introduce}\:{the}\:{fonction}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${after}\:{verifying}\:{that}\:{f}\:{is}\:{derivable}\:{we}\:{have} \\ $$$${f}^{'} \left({t}\right)=\:−\int_{\mathrm{0}} ^{\infty} {sinx}\:{e}^{−{tx}} {dx}=−{Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{\left({i}−{t}\right){x}} {dx}\right) \\ $$$$=−\left[\:\frac{\mathrm{1}}{{i}−{t}}\:{e}^{\left({i}−{t}\right){x}} \:\right]_{{x}=\mathrm{0}} ^{{x}−>\propto} =\:\frac{\mathrm{1}}{{i}−{t}}\:=\frac{{i}+{t}}{−\mathrm{1}−{t}^{\mathrm{2}} }=−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:−\frac{{i}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow{f}^{'} \left({t}\right)=\:−\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\Rightarrow{f}\left({t}\right)=\lambda−{arctan}\left({t}\right){and}\:{due}\:{to}\:{f}\:{continue} \\ $$$$\exists\:{M}>\mathrm{0}//{f}\left({t}\right)\leqslant{M}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} {dx}=_{{t}−>\propto{so}} \frac{{M}}{{t}}−>\mathrm{0} \\ $$$${so}\:\lambda=\frac{\pi}{\mathrm{2}}\:{and}\:{f}\left({t}\right)=\frac{\pi}{\mathrm{2}}\:−{arctan}\left({t}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}={f}\left(\mathrm{0}\right)=\frac{\pi}{\mathrm{2}}\:\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com