Question and Answers Forum

All Questions      Topic List

Gravitation Questions

Previous in All Question      Next in All Question      

Previous in Gravitation      Next in Gravitation      

Question Number 27445 by Tinkutara last updated on 07/Jan/18

If a planet is suddenly stopped in its  orbit, supposed to be circular, then it  would fall into the sun in a time (T/(4(√2))),  where T is the time period of  revolution. Prove this.

$${If}\:{a}\:{planet}\:{is}\:{suddenly}\:{stopped}\:{in}\:{its} \\ $$$${orbit},\:{supposed}\:{to}\:{be}\:{circular},\:{then}\:{it} \\ $$$${would}\:{fall}\:{into}\:{the}\:{sun}\:{in}\:{a}\:{time}\:\frac{{T}}{\mathrm{4}\sqrt{\mathrm{2}}}, \\ $$$${where}\:{T}\:{is}\:{the}\:{time}\:{period}\:{of} \\ $$$${revolution}.\:{Prove}\:{this}. \\ $$

Answered by mrW1 last updated on 07/Jan/18

Gravitation force between planet  and sun:  F=((GMm)/L^2 )  with M = mass of sun  m = mass of planet  L = distance between them  F=((mv^2 )/L)=((GMm)/L^2 )  ⇒v=(√((GM)/L))=velocity of planet in orbit  T=((2πL)/v)=2πL(√(L/(GM)))    free fall of planet into sun from  height x= L to 0:  F(x)=((GMm)/x^2 )=ma  ⇒a=((GM)/x^2 )=−v(dv/dx)  ⇒vdv=−GM (dx/x^2 )  ⇒∫_0 ^( v) vdv=−GM ∫_L ^( x) (dx/x^2 )  ⇒(1/2)v^2 =GM((1/x)−(1/L))=((GM(L−x))/(Lx))  ⇒v=(√((2GM)/L)) (√((L−x)/x))=−(dx/dt)  ⇒−(√((2GM)/L)) dt=(√(x/(L−x))) dx  ⇒−(√((2GM)/L)) ∫_0 ^( T_1 ) dt=∫_L ^( 0) (√(x/(L−x))) dx  ⇒−(√((2GM)/L)) T_1 =[−(√(x(L−x)))−L tan^(−1) (√((L−x)/x))]_L ^0 =−((Lπ)/2)  ⇒T_1 =((πL)/2)×(√(L/(2GM)))=(1/(4(√2)))×2πL (√(L/(GM)))  ⇒T_1 =(T/(4(√2)))

$${Gravitation}\:{force}\:{between}\:{planet} \\ $$$${and}\:{sun}: \\ $$$${F}=\frac{{GMm}}{{L}^{\mathrm{2}} } \\ $$$${with}\:{M}\:=\:{mass}\:{of}\:{sun} \\ $$$${m}\:=\:{mass}\:{of}\:{planet} \\ $$$${L}\:=\:{distance}\:{between}\:{them} \\ $$$${F}=\frac{{mv}^{\mathrm{2}} }{{L}}=\frac{{GMm}}{{L}^{\mathrm{2}} } \\ $$$$\Rightarrow{v}=\sqrt{\frac{{GM}}{{L}}}={velocity}\:{of}\:{planet}\:{in}\:{orbit} \\ $$$${T}=\frac{\mathrm{2}\pi{L}}{{v}}=\mathrm{2}\pi{L}\sqrt{\frac{{L}}{{GM}}} \\ $$$$ \\ $$$${free}\:{fall}\:{of}\:{planet}\:{into}\:{sun}\:{from} \\ $$$${height}\:{x}=\:{L}\:{to}\:\mathrm{0}: \\ $$$${F}\left({x}\right)=\frac{{GMm}}{{x}^{\mathrm{2}} }={ma} \\ $$$$\Rightarrow{a}=\frac{{GM}}{{x}^{\mathrm{2}} }=−{v}\frac{{dv}}{{dx}} \\ $$$$\Rightarrow{vdv}=−{GM}\:\frac{{dx}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:{v}} {vdv}=−{GM}\:\int_{{L}} ^{\:{x}} \frac{{dx}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}{v}^{\mathrm{2}} ={GM}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{L}}\right)=\frac{{GM}\left({L}−{x}\right)}{{Lx}} \\ $$$$\Rightarrow{v}=\sqrt{\frac{\mathrm{2}{GM}}{{L}}}\:\sqrt{\frac{{L}−{x}}{{x}}}=−\frac{{dx}}{{dt}} \\ $$$$\Rightarrow−\sqrt{\frac{\mathrm{2}{GM}}{{L}}}\:{dt}=\sqrt{\frac{{x}}{{L}−{x}}}\:{dx} \\ $$$$\Rightarrow−\sqrt{\frac{\mathrm{2}{GM}}{{L}}}\:\int_{\mathrm{0}} ^{\:{T}_{\mathrm{1}} } {dt}=\int_{{L}} ^{\:\mathrm{0}} \sqrt{\frac{{x}}{{L}−{x}}}\:{dx} \\ $$$$\Rightarrow−\sqrt{\frac{\mathrm{2}{GM}}{{L}}}\:{T}_{\mathrm{1}} =\left[−\sqrt{{x}\left({L}−{x}\right)}−{L}\:\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{L}−{x}}{{x}}}\right]_{{L}} ^{\mathrm{0}} =−\frac{{L}\pi}{\mathrm{2}} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{\pi{L}}{\mathrm{2}}×\sqrt{\frac{{L}}{\mathrm{2}{GM}}}=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}×\mathrm{2}\pi{L}\:\sqrt{\frac{{L}}{{GM}}} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{{T}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$

Commented by Tinkutara last updated on 07/Jan/18

How do you solved the integral? As in question 27400 it is giving another answer.

Commented by mrW1 last updated on 07/Jan/18

I=∫_L ^( 0) (√(x/(L−x))) dx  =L∫_L ^( 0) (√((x/L)/(1−(x/L)))) d(x/L)  =L∫_1 ^( 0) (√(λ/(1−λ))) dλ  with λ=(x/L)    let (1/t)=(√(λ/(1−λ)))  ⇒1−λ=t^2 λ  ⇒λ=(1/(1+t^2 ))  dλ=−((2t)/((1+t^2 )^2 ))  ∫(√(λ/(1−λ))) dλ=−2∫(1/((1+t^2 )^2 ))dt  =−2[(t/(2(1+t^2 )))+(1/2)tan^(−1) t]  =−(t/(1+t^2 ))−tan^(−1) t  =−(√(λ(1−λ)))−tan^(−1) (√((1−λ)/λ))  =−(√((x/L)(1−(x/L))))−tan^(−1) (√((1−(x/L))/(x/L)))  =−(1/L)(√(x(L−x)))−tan^(−1) (√((L−x)/x))    I=∫_L ^( 0) (√(x/(L−x))) dx  =[−(√(x(L−x)))−L tan^(−1) (√((L−x)/x))]_L ^0   =−((Lπ)/2)

$${I}=\int_{{L}} ^{\:\mathrm{0}} \sqrt{\frac{{x}}{{L}−{x}}}\:{dx} \\ $$$$={L}\int_{{L}} ^{\:\mathrm{0}} \sqrt{\frac{\frac{{x}}{{L}}}{\mathrm{1}−\frac{{x}}{{L}}}}\:{d}\frac{{x}}{{L}} \\ $$$$={L}\int_{\mathrm{1}} ^{\:\mathrm{0}} \sqrt{\frac{\lambda}{\mathrm{1}−\lambda}}\:{d}\lambda \\ $$$${with}\:\lambda=\frac{{x}}{{L}} \\ $$$$ \\ $$$${let}\:\frac{\mathrm{1}}{{t}}=\sqrt{\frac{\lambda}{\mathrm{1}−\lambda}} \\ $$$$\Rightarrow\mathrm{1}−\lambda={t}^{\mathrm{2}} \lambda \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${d}\lambda=−\frac{\mathrm{2}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\int\sqrt{\frac{\lambda}{\mathrm{1}−\lambda}}\:{d}\lambda=−\mathrm{2}\int\frac{\mathrm{1}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=−\mathrm{2}\left[\frac{{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} {t}\right] \\ $$$$=−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }−\mathrm{tan}^{−\mathrm{1}} {t} \\ $$$$=−\sqrt{\lambda\left(\mathrm{1}−\lambda\right)}−\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{\mathrm{1}−\lambda}{\lambda}} \\ $$$$=−\sqrt{\frac{{x}}{{L}}\left(\mathrm{1}−\frac{{x}}{{L}}\right)}−\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{\mathrm{1}−\frac{{x}}{{L}}}{\frac{{x}}{{L}}}} \\ $$$$=−\frac{\mathrm{1}}{{L}}\sqrt{{x}\left({L}−{x}\right)}−\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{L}−{x}}{{x}}} \\ $$$$ \\ $$$${I}=\int_{{L}} ^{\:\mathrm{0}} \sqrt{\frac{{x}}{{L}−{x}}}\:{dx} \\ $$$$=\left[−\sqrt{{x}\left({L}−{x}\right)}−{L}\:\mathrm{tan}^{−\mathrm{1}} \sqrt{\frac{{L}−{x}}{{x}}}\right]_{{L}} ^{\mathrm{0}} \\ $$$$=−\frac{{L}\pi}{\mathrm{2}} \\ $$

Commented by Tinkutara last updated on 07/Jan/18

Commented by Tinkutara last updated on 07/Jan/18

This was book's solution. Where is mistake here then? The integral comes out negative but here it shows positive.

Commented by mrW1 last updated on 07/Jan/18

To be exact, the 3rd and 4th line in book is not correct.  in 3rd line it should be (−(dx/dt))^2  as  replacement for v^2 , since  with the definition for x−axis we  have v=−(dx/dt), on one side of 4th line  a “−” sign is missing.    sincef(x)= (√((x/(r−x)) )) is positive,  ∫_r ^( 0) f(x)dx is always negative.    I think the book doesn′t work so  cleanly.

$${To}\:{be}\:{exact},\:{the}\:\mathrm{3}{rd}\:{and}\:\mathrm{4}{th}\:{line}\:{in}\:{book}\:{is}\:{not}\:{correct}. \\ $$$${in}\:\mathrm{3}{rd}\:{line}\:{it}\:{should}\:{be}\:\left(−\frac{{dx}}{{dt}}\right)^{\mathrm{2}} \:{as} \\ $$$${replacement}\:{for}\:{v}^{\mathrm{2}} ,\:{since} \\ $$$${with}\:{the}\:{definition}\:{for}\:{x}−{axis}\:{we} \\ $$$${have}\:{v}=−\frac{{dx}}{{dt}},\:{on}\:{one}\:{side}\:{of}\:\mathrm{4}{th}\:{line} \\ $$$${a}\:``−''\:{sign}\:{is}\:{missing}. \\ $$$$ \\ $$$${sincef}\left({x}\right)=\:\sqrt{\frac{{x}}{{r}−{x}}\:}\:{is}\:{positive}, \\ $$$$\int_{{r}} ^{\:\mathrm{0}} {f}\left({x}\right){dx}\:{is}\:{always}\:{negative}. \\ $$$$ \\ $$$${I}\:{think}\:{the}\:{book}\:{doesn}'{t}\:{work}\:{so} \\ $$$${cleanly}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com