Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27464 by tawa tawa last updated on 07/Jan/18

Show that:    ∫_( 0) ^( 2π)  ((cos(3x))/(5 − 4cos(x))) dx  =  (π/(12))

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{\mathrm{cos}\left(\mathrm{3x}\right)}{\mathrm{5}\:−\:\mathrm{4cos}\left(\mathrm{x}\right)}\:\mathrm{dx}\:\:=\:\:\frac{\pi}{\mathrm{12}} \\ $$

Commented by abdo imad last updated on 07/Jan/18

let put I= ∫_0 ^(2π)  ((cos(3x))/(5−4cosx))dx and use the ch. e^(ix)  =z  I= ∫_(/z/=1)  (((z^3 +z^(−3) )/2)/(5−4((z+z^(−1) )/2))) (dz/(iz))= (1/2)∫_(/z/=1) ((z^3 +z^(−3) )/(iz(5−2z −2z^(−1) )))dz  2I= ∫_(/z/=1) ((−i( z^3 +z^(−3) ))/(5z −2z^2 −2))dz = ∫_(/z/=1) ((i( z^3 +z^(−3) ))/(2z^2 −5z +2))dz let consider    the complex function f(z) = ((i( z^3  +z^(−3) ))/(2z^2 −5z +2))  poles of f?  2z^2 −5z +2=0  Δ=25−16=9  z_1 =((5−3)/4)= (1/2)  and z_2 =((5+3)/4)=2  and f(z)=  ((i(z^3 +z^(−3) ))/(2(z−(1/2))(z−2)))  we see that /z_(2/>1)  so  ∫_(/z/=1 ) f(z)dz=2iπ Res(f,(1/2))  Res(f,(1/2))= lim_(z−>(1/2)) ^ (z−(1/2))f(z)= ((i( (1/8)+8))/(2(−(3/2))))=((i((65)/8))/(−3))  =−i((65)/(24)) ⇒  ∫_(/z/=1) f(z)dz=2iπ(−i ((65)/(24)))= ((65π)/(12))  I=((65π)/(24)).

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{cos}\left(\mathrm{3}{x}\right)}{\mathrm{5}−\mathrm{4}{cosx}}{dx}\:{and}\:{use}\:{the}\:{ch}.\:{e}^{{ix}} \:={z} \\ $$$${I}=\:\int_{/{z}/=\mathrm{1}} \:\frac{\frac{{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} }{\mathrm{2}}}{\mathrm{5}−\mathrm{4}\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}}=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{/{z}/=\mathrm{1}} \frac{{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} }{{iz}\left(\mathrm{5}−\mathrm{2}{z}\:−\mathrm{2}{z}^{−\mathrm{1}} \right)}{dz} \\ $$$$\mathrm{2}{I}=\:\int_{/{z}/=\mathrm{1}} \frac{−{i}\left(\:{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \right)}{\mathrm{5}{z}\:−\mathrm{2}{z}^{\mathrm{2}} −\mathrm{2}}{dz}\:=\:\int_{/{z}/=\mathrm{1}} \frac{{i}\left(\:{z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \right)}{\mathrm{2}{z}^{\mathrm{2}} −\mathrm{5}{z}\:+\mathrm{2}}{dz}\:{let}\:{consider} \\ $$$$ \\ $$$${the}\:{complex}\:{function}\:{f}\left({z}\right)\:=\:\frac{{i}\left(\:{z}^{\mathrm{3}} \:+{z}^{−\mathrm{3}} \right)}{\mathrm{2}{z}^{\mathrm{2}} −\mathrm{5}{z}\:+\mathrm{2}}\:\:{poles}\:{of}\:{f}? \\ $$$$\mathrm{2}{z}^{\mathrm{2}} −\mathrm{5}{z}\:+\mathrm{2}=\mathrm{0}\:\:\Delta=\mathrm{25}−\mathrm{16}=\mathrm{9} \\ $$$${z}_{\mathrm{1}} =\frac{\mathrm{5}−\mathrm{3}}{\mathrm{4}}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:{and}\:{z}_{\mathrm{2}} =\frac{\mathrm{5}+\mathrm{3}}{\mathrm{4}}=\mathrm{2}\:\:{and}\:{f}\left({z}\right)=\:\:\frac{{i}\left({z}^{\mathrm{3}} +{z}^{−\mathrm{3}} \right)}{\mathrm{2}\left({z}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({z}−\mathrm{2}\right)} \\ $$$${we}\:{see}\:{that}\:/{z}_{\mathrm{2}/>\mathrm{1}} \:{so} \\ $$$$\int_{/{z}/=\mathrm{1}\:} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left({f},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${Res}\left({f},\frac{\mathrm{1}}{\mathrm{2}}\right)=\:{lim}_{{z}−>\frac{\mathrm{1}}{\mathrm{2}}} ^{} \left({z}−\frac{\mathrm{1}}{\mathrm{2}}\right){f}\left({z}\right)=\:\frac{{i}\left(\:\frac{\mathrm{1}}{\mathrm{8}}+\mathrm{8}\right)}{\mathrm{2}\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)}=\frac{{i}\frac{\mathrm{65}}{\mathrm{8}}}{−\mathrm{3}} \\ $$$$=−{i}\frac{\mathrm{65}}{\mathrm{24}}\:\Rightarrow\:\:\int_{/{z}/=\mathrm{1}} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi\left(−{i}\:\frac{\mathrm{65}}{\mathrm{24}}\right)=\:\frac{\mathrm{65}\pi}{\mathrm{12}} \\ $$$${I}=\frac{\mathrm{65}\pi}{\mathrm{24}}. \\ $$$$ \\ $$

Commented by abdo imad last updated on 07/Jan/18

 think there is a mistake in the exercise???

$$\:{think}\:{there}\:{is}\:{a}\:{mistake}\:{in}\:{the}\:{exercise}??? \\ $$

Commented by tawa tawa last updated on 07/Jan/18

God bless you sir. But the answer is  (π/(12))

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{But}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\:\frac{\pi}{\mathrm{12}} \\ $$

Commented by abdo imad last updated on 07/Jan/18

i will try another method for verifying...thanks

$${i}\:{will}\:{try}\:{another}\:{method}\:{for}\:{verifying}...{thanks} \\ $$

Commented by tawa tawa last updated on 07/Jan/18

I really appreciate sir. God bless you

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com