Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2748 by Rasheed Soomro last updated on 26/Nov/15

Show that ((3^(2n+1) +5^(2n+1) )/8) is an integer for n∈Z^+  .

$${Show}\:{that}\:\frac{\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{8}}\:{is}\:{an}\:{integer}\:{for}\:{n}\in\mathbb{Z}^{+} \:. \\ $$

Answered by prakash jain last updated on 26/Nov/15

f(n)=3^(2n+1) +5^(2n+1)   f(1)=27+125=152=19×8  Let us say f(n) 3^(2n+1) +5^(2n+1)  is divisible by 8.  f(n+1)=3^(2n+3) +5^(2n+3)   f(n+1)−f(n)=3^(2n+3) −3^(2n+1) +5^(2n+3) −5^(2n+1)   =3^(2n+1) (8)+5^(2n+1) (24)  =8(3^(2n+1) +3∙5^(2n+1) )  ∵ ((f(n))/8)=k⇒f(n)=8k, k∈N  f(n+1)=8(3^(2n+1) +3∙5^(2n+1) )+8k  f(n+1)=8(3^(2n+1) +3∙5^(2n+1) +k)  ∴ f(n+1) is divisible by 8 or  ((f(n+1))/8) is an integer.

$${f}\left({n}\right)=\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{27}+\mathrm{125}=\mathrm{152}=\mathrm{19}×\mathrm{8} \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:{f}\left({n}\right)\:\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} \:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{8}. \\ $$$${f}\left({n}+\mathrm{1}\right)=\mathrm{3}^{\mathrm{2}{n}+\mathrm{3}} +\mathrm{5}^{\mathrm{2}{n}+\mathrm{3}} \\ $$$${f}\left(\mathrm{n}+\mathrm{1}\right)−{f}\left({n}\right)=\mathrm{3}^{\mathrm{2}{n}+\mathrm{3}} −\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{5}^{\mathrm{2}{n}+\mathrm{3}} −\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{8}\right)+\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} \left(\mathrm{24}\right) \\ $$$$=\mathrm{8}\left(\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{3}\centerdot\mathrm{5}^{\mathrm{2n}+\mathrm{1}} \right) \\ $$$$\because\:\frac{{f}\left({n}\right)}{\mathrm{8}}={k}\Rightarrow{f}\left({n}\right)=\mathrm{8}{k},\:{k}\in\mathbb{N} \\ $$$${f}\left({n}+\mathrm{1}\right)=\mathrm{8}\left(\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{3}\centerdot\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} \right)+\mathrm{8}{k} \\ $$$${f}\left({n}+\mathrm{1}\right)=\mathrm{8}\left(\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{3}\centerdot\mathrm{5}^{\mathrm{2}{n}+\mathrm{1}} +{k}\right) \\ $$$$\therefore\:{f}\left({n}+\mathrm{1}\right)\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{8}\:\mathrm{or} \\ $$$$\frac{{f}\left({n}+\mathrm{1}\right)}{\mathrm{8}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$

Commented by RasheedAhmad last updated on 26/Nov/15

Nice!

$$\mathcal{N}{ice}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com