Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27495 by abdo imad last updated on 07/Jan/18

find α and β from R /∫_0 ^π (αt^2 +βt)cos(nt)dt= (1/n^2 )  for all number n from N^(∗ )  then find  Σ_(n=1) ^∝   (1/n^2 ) .

findαandβfromR/0π(αt2+βt)cos(nt)dt=1n2forallnumbernfromNthenfindn=11n2.

Commented by abdo imad last updated on 19/Jan/18

let put I= ∫_0 ^π (αt^2  +βt)cos(nt)dt  I= Re ( ∫_0 ^π (αt^2 +βt)^ e^(int) t)  by parts  u= αt^2 +βt   and  v^′ = e^(int)   I= [(αt^2 +βt)(e^(int) /(in))  ]_0 ^π   − (1/(in))∫_0 ^π (2αt+β)e^(int) dt  =(1/(in))((απ^2 +βπ)(−1)^n ) −(1/(in)){[  (1/(in))(2αt+β) e^(int) ]_0 ^π −(1/(in))∫_0 ^π (2α)e^(int) dt}  we find  I= (1/n^2 ) ((2απ +β)(−1)^n −β)  I = (1/n^2 ) ∀n∈N^∗   ⇔ (2απ+β)(−1)^n  −β= 1 for alln  ⇔ β =−1 and 2απ−1=0 ⇒ α=(1/(2π)) and β=−1 so  (1/n^2 )= ∫_0 ^π ((1/(2π)) t^2 −t)cos(nt)dt  Σ_(n=1) ^∝  (1/n^2 )  =∫_0 ^π ((1/(2π))t^2 −t)( Σ_(n=1) ^∝  cos(nt))dt but  Σ_(n=1) ^∝  cos(nt)=Re(  Σ_(n=0) ^∝  (^ e^(it) )^n )−1=Re(  (1/(1−e^(it) )))−1  =Re(  (1/(2sin^2 ((t/2))−2isin((t/2))cos((t/2)))))  =Re (        (1/(−2isin((t/2)) e^(i(t/2)) ))) =Re(  (1/2)i((cos((t/2))−i sin((t/2)))/(sin((t/2)))))  = (1/2)−1=−(1/2)  Σ_(n=1) ^∝  (1/n^2 ) =−(1/2) ∫_0 ^π ((1/(2π))t^2 −t)dt  =−(1/(4π))  [ (t^3 /3)]_0 ^π  +(1/2) [ (t^2 /2)]_0 ^π   = (π^2 /4)−(1/(4π)) (π^3 /3)=(π^2 /4) −(π^2 /(12))  = ((3π^2  −π^2 )/(12)) = (π^2 /6).

letputI=0π(αt2+βt)cos(nt)dtI=Re(0π(αt2+βt)eintt)bypartsu=αt2+βtandv=eintI=[(αt2+βt)eintin]0π1in0π(2αt+β)eintdt=1in((απ2+βπ)(1)n)1in{[1in(2αt+β)eint]0π1in0π(2α)eintdt}wefindI=1n2((2απ+β)(1)nβ)I=1n2nN(2απ+β)(1)nβ=1forallnβ=1and2απ1=0α=12πandβ=1so1n2=0π(12πt2t)cos(nt)dtn=11n2=0π(12πt2t)(n=1cos(nt))dtbutn=1cos(nt)=Re(n=0(eit)n)1=Re(11eit)1=Re(12sin2(t2)2isin(t2)cos(t2))=Re(12isin(t2)eit2)=Re(12icos(t2)isin(t2)sin(t2))=121=12n=11n2=120π(12πt2t)dt=14π[t33]0π+12[t22]0π=π2414ππ33=π24π212=3π2π212=π26.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com