All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27495 by abdo imad last updated on 07/Jan/18
findαandβfromR/∫0π(αt2+βt)cos(nt)dt=1n2forallnumbernfromN∗thenfind∑n=1∝1n2.
Commented by abdo imad last updated on 19/Jan/18
letputI=∫0π(αt2+βt)cos(nt)dtI=Re(∫0π(αt2+βt)eintt)bypartsu=αt2+βtandv′=eintI=[(αt2+βt)eintin]0π−1in∫0π(2αt+β)eintdt=1in((απ2+βπ)(−1)n)−1in{[1in(2αt+β)eint]0π−1in∫0π(2α)eintdt}wefindI=1n2((2απ+β)(−1)n−β)I=1n2∀n∈N∗⇔(2απ+β)(−1)n−β=1foralln⇔β=−1and2απ−1=0⇒α=12πandβ=−1so1n2=∫0π(12πt2−t)cos(nt)dt∑n=1∝1n2=∫0π(12πt2−t)(∑n=1∝cos(nt))dtbut∑n=1∝cos(nt)=Re(∑n=0∝(eit)n)−1=Re(11−eit)−1=Re(12sin2(t2)−2isin(t2)cos(t2))=Re(1−2isin(t2)eit2)=Re(12icos(t2)−isin(t2)sin(t2))=12−1=−12∑n=1∝1n2=−12∫0π(12πt2−t)dt=−14π[t33]0π+12[t22]0π=π24−14ππ33=π24−π212=3π2−π212=π26.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com