Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2750 by RasheedAhmad last updated on 26/Nov/15

Prove that:  (i)  2^n >n^2   for all integral values  of  n≥5  (ii) n!>3^(n−1) ,for all integral values  of n≥5

Provethat: (i)2n>n2forallintegralvalues ofn5 (ii)n!>3n1,forallintegralvalues ofn5

Answered by Yozzi last updated on 26/Nov/15

(Skeletons of proofs)  (i) Let P(n): 2^n >n^2  , ∀n≥5,n∈Z.  P(5): 2^5 =32>25=5^2   ⇒P(n) true for n=5.    Supppose P(n) true for n=k (k≥5):                   2^k >k^2   P(k+1): 2^k >k^2   ×2:          2^(k+1) >2k^2       2^(k+1) >k^2 +k^2 −2k+1+2k−1       2^(k+1) >k^2 −2k−1+(k+1)^2   2^(k+1) >(k−1)^2 −2+(k+1)^2   ∵ k≥5⇒k−1≥4⇒(k−1)^2 ≥16  (k−1)^2 −2≥14>0  ∴(k−1)^2 −2+(k+1)^2 >(k+1)^2   Hence, 2^(k+1) >(k+1)^2 .  ∴ P(k)⇒P(k+1)  ∵ P(5) is true, by P.M.I, 2^n >n^2    ∀n≥5,n∈Z.    (ii) Let P(n): n!>3^(n−1) , n≥5,n∈Z.  P(5): 5!=120>3^4 =81  ∴ P(n) true for n=5.    Suppose P(n) true for n=k (k≥5):                         k!>3^(k−1)   P(k+1):  k!>3^(k−1)   ×(k+1>0):  (k+1)!>(k+1)3^(k−1)   ∵ k≥5⇒k+1≥6⇒(k+1)3^(k−1) ≥6×3^(k−1)   (k+1)3^(k−1) ≥2×3^k >3^k   Hence, (k+1)!>3^([k+1]−1) .  ∴ P(k)⇒P(k+1)  Since P(5) is true, by P.M.I,  k!>3^(k−1)  ∀n≥5,n∈Z.

(Skeletonsofproofs) (i)LetP(n):2n>n2,n5,nZ. P(5):25=32>25=52 P(n)trueforn=5. SuppposeP(n)trueforn=k(k5): 2k>k2 P(k+1):2k>k2 ×2:2k+1>2k2 2k+1>k2+k22k+1+2k1 2k+1>k22k1+(k+1)2 2k+1>(k1)22+(k+1)2 k5k14(k1)216 (k1)2214>0 (k1)22+(k+1)2>(k+1)2 Hence,2k+1>(k+1)2. P(k)P(k+1) P(5)istrue,byP.M.I,2n>n2 n5,nZ. (ii)LetP(n):n!>3n1,n5,nZ. P(5):5!=120>34=81 P(n)trueforn=5. SupposeP(n)trueforn=k(k5): k!>3k1 P(k+1):k!>3k1 ×(k+1>0):(k+1)!>(k+1)3k1 k5k+16(k+1)3k16×3k1 (k+1)3k12×3k>3k Hence,(k+1)!>3[k+1]1. P(k)P(k+1) SinceP(5)istrue,byP.M.I, k!>3k1n5,nZ.

Commented byRasheedAhmad last updated on 26/Nov/15

Nice!

Nice!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com