All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 2750 by RasheedAhmad last updated on 26/Nov/15
Provethat: (i)2n>n2forallintegralvalues ofn⩾5 (ii)n!>3n−1,forallintegralvalues ofn⩾5
Answered by Yozzi last updated on 26/Nov/15
(Skeletonsofproofs) (i)LetP(n):2n>n2,∀n⩾5,n∈Z. P(5):25=32>25=52 ⇒P(n)trueforn=5. SuppposeP(n)trueforn=k(k⩾5): 2k>k2 P(k+1):2k>k2 ×2:2k+1>2k2 2k+1>k2+k2−2k+1+2k−1 2k+1>k2−2k−1+(k+1)2 2k+1>(k−1)2−2+(k+1)2 ∵k⩾5⇒k−1⩾4⇒(k−1)2⩾16 (k−1)2−2⩾14>0 ∴(k−1)2−2+(k+1)2>(k+1)2 Hence,2k+1>(k+1)2. ∴P(k)⇒P(k+1) ∵P(5)istrue,byP.M.I,2n>n2 ∀n⩾5,n∈Z. (ii)LetP(n):n!>3n−1,n⩾5,n∈Z. P(5):5!=120>34=81 ∴P(n)trueforn=5. SupposeP(n)trueforn=k(k⩾5): k!>3k−1 P(k+1):k!>3k−1 ×(k+1>0):(k+1)!>(k+1)3k−1 ∵k⩾5⇒k+1⩾6⇒(k+1)3k−1⩾6×3k−1 (k+1)3k−1⩾2×3k>3k Hence,(k+1)!>3[k+1]−1. ∴P(k)⇒P(k+1) SinceP(5)istrue,byP.M.I, k!>3k−1∀n⩾5,n∈Z.
Commented byRasheedAhmad last updated on 26/Nov/15
Nice!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com