All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27500 by abdo imad last updated on 07/Jan/18
find∫∫Δ4−x2−y2dxdywithΔ={(x,y)∈R2/x2+y2⩽2x}
Commented by abdo imad last updated on 10/Jan/18
letusethechangementx=rcosθandy=rsinθx2+y2⩽2x⇔r2⩽2rcosθ⇔0<r⩽2cosθI=∫∫−π2<θ<π2and0<r⩽2cosθ4−r2rdrdθI=∫−π2π2(∫02cosθr4−r2dr)dθbut∫02cosθr4−r2dr=[−13(4−r2)32]02cosθ=−13((4−4cos2θ)32−432=−13(432(sin2)32−8)=−13(8sin3θ−8)I=−83∫−π2π2(sin3θ−1)dθ=8π3−83∫−π2π2sin3θdθwefindthevalueofIbylinearisationofsin3θ....
thefonctionisimparso∫−π2π2sin3dx=0andI=8π3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com