Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27500 by abdo imad last updated on 07/Jan/18

find ∫∫_Δ (√(4 −x^2 −y^2  ))  dxdy with  Δ={(x,y) ∈R^2 / x^2  +y^2  ≤2x}

findΔ4x2y2dxdywithΔ={(x,y)R2/x2+y22x}

Commented by abdo imad last updated on 10/Jan/18

let use the changement x=rcosθ and y=rsinθ  x^2  +y^2 ≤2x ⇔ r^2 ≤ 2r cosθ  ⇔  0<r≤ 2cosθ  I= ∫∫_(−_ (π/2)<θ<(π/2) and 0<r≤2cosθ)   (√( 4−r^2 )) rdrdθ  I =∫_(−(π/2)) ^(π/2) (  ∫_0 ^(2cosθ) r(√( 4−r^2 )) dr)dθ  but    ∫_0 ^(2cosθ) r(√(4−r^2 )) dr  = [−(1/3)(4−r^2 )^(3/2)   ]_0 ^(2cosθ)   = −(1/3)((4−4cos^2 θ)^(3/2) −4^(3/2)   =−(1/3)(4^(3/2) (sin^2 )^(3/2) −8)= −(1/3)(8 sin^3 θ −8 )  I= −(8/3) ∫_(−(π/2)) ^(π/2)  (sin^3 θ −1)dθ   = ((8π)/3) −(8/3) ∫_(−(π/2)) ^(π/2)   sin^3 θdθ     we find the value of I by linearisation of sin^3 θ....

letusethechangementx=rcosθandy=rsinθx2+y22xr22rcosθ0<r2cosθI=π2<θ<π2and0<r2cosθ4r2rdrdθI=π2π2(02cosθr4r2dr)dθbut02cosθr4r2dr=[13(4r2)32]02cosθ=13((44cos2θ)32432=13(432(sin2)328)=13(8sin3θ8)I=83π2π2(sin3θ1)dθ=8π383π2π2sin3θdθwefindthevalueofIbylinearisationofsin3θ....

Commented by abdo imad last updated on 10/Jan/18

the  fonction is impar so  ∫_(−(π/2)) ^(π/2)  sin^3 dx=0  and I= ((8π)/3) .

thefonctionisimparsoπ2π2sin3dx=0andI=8π3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com