Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27502 by abdo imad last updated on 07/Jan/18

find  ∫_0 ^(π/2)    ((ln(1+xsin^2 t))/(sin^2 t))dt with −1<x<1 .

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right)}{{sin}^{\mathrm{2}} {t}}{dt}\:{with}\:−\mathrm{1}<{x}<\mathrm{1}\:. \\ $$

Commented byabdo imad last updated on 09/Jan/18

let put f(x)= ∫_0 ^(π/2)  ((ln(1+xsin^2 t))/(sin^2 t))dt after verifying that f is  derivable on ]−1,1[ we have f^, (x)= ∫_0 ^(π/2)   (dt/(1+xsin^2 t))   because of /xsin^2 t/<1   f^′ (x)= ∫_0 ^(π/2) ( Σ_(n=0) ^∝ (−1)^n x^n  sin^(2n) t)dt  =Σ_(n=0) ^∝ (−1)^n x^n  ∫_0 ^(π/2) sin^(2n) tdt= Σ_(n=0) ^∝ (−1)^n W_n  x^n   with W_n = ∫_0 ^(π/2)  sin^(2n) tdt  and the value of W_n  is known  (walliss integral)  f(x)= Σ_(n=0) ^∝ (((−1)^n )/(n+1)) W_n  x^(n+1)    +λ  λ=f(0)=0⇒   f(x)= Σ_(n=0) ^∝ (((−1)^n )/(n+1)) W_n  .x^(n+1)    .

$${let}\:{put}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right)}{{sin}^{\mathrm{2}} {t}}{dt}\:{after}\:{verifying}\:{that}\:{f}\:{is} \\ $$ $$\left.{derivable}\:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\:{we}\:{have}\:{f}^{,} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{1}+{xsin}^{\mathrm{2}} {t}}\right. \\ $$ $$\:{because}\:{of}\:/{xsin}^{\mathrm{2}} {t}/<\mathrm{1}\: \\ $$ $${f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:{sin}^{\mathrm{2}{n}} {t}\right){dt} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{n}} {tdt}=\:\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {W}_{{n}} \:{x}^{{n}} \\ $$ $${with}\:{W}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}{n}} {tdt}\:\:{and}\:{the}\:{value}\:{of}\:{W}_{{n}} \:{is}\:{known} \\ $$ $$\left({walliss}\:{integral}\right) \\ $$ $${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{W}_{{n}} \:{x}^{{n}+\mathrm{1}} \:\:\:+\lambda \\ $$ $$\lambda={f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow\:\:\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{W}_{{n}} \:.{x}^{{n}+\mathrm{1}} \:\:\:. \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com