Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 27559 by Rasheed.Sindhi last updated on 09/Jan/18

Change in Q#27507  Solve simultaneously:  2(√x)+y=13  x+2(√y)=10

$$\mathrm{Change}\:\mathrm{in}\:\mathrm{Q}#\mathrm{27507} \\ $$$$\mathrm{Solve}\:\mathrm{simultaneously}: \\ $$$$\mathrm{2}\sqrt{\mathrm{x}}+\mathrm{y}=\mathrm{13} \\ $$$$\mathrm{x}+\mathrm{2}\sqrt{\mathrm{y}}=\mathrm{10} \\ $$

Commented by Rasheed.Sindhi last updated on 09/Jan/18

x=4,y=9 is solution   Method of solving is required.

$$\mathrm{x}=\mathrm{4},\mathrm{y}=\mathrm{9}\:\mathrm{is}\:\mathrm{solution}\: \\ $$$$\mathrm{Method}\:\mathrm{of}\:\mathrm{solving}\:\mathrm{is}\:\mathrm{required}. \\ $$

Answered by Amstrongmazoka last updated on 09/Jan/18

From equation (1) y=13−2(√x)  ⇒ substituting for y in equation(2), gives,  x+2(√((13−2(√x))))=10    ∴ (√((13−2(√x))))=5−(x/2)  Now squaring above sides, gives  13−2(√x)=(5−(x/2))^2       ⇒13−2(√x)=25−5x+(x^2 /4)  ∴ −2(√x)=12−5x+(x^2 /4).   Again, squaring both sides gives  4x=144−120x+25x^2 +6x^2 −((5x^3 )/2)+(x^4 /(16)).   Grouping like terms gives  (x^4 /(16))−((5x^3 )/2)+31x^2 −124x+144=0. Multiplying through by 16 gives  x^4 −40x^3 +496x^2 −1984x+2304=0. This is a polynomial of degree 4 and it can be solved using factorisation or Newton′ method.  Let f(x)=x^4 −40x^3 +496x^2 −1984x+2304  ⇒f(4)=4^4 −40(4^3 )+496(4^2 )−1984(4)+2304=0  By the factor theorem since f(4)=0, ⇒(x−4) is a factor of f(x).  The other factors are found as follows:                 x^3  −36x^2  +352x−576  (x−4)(√(x^4 −40x^3 +496x^2 −1984x+2304))                −(x^4 −4x^3 )                         −36x^3 +496x^2                      −(−36x^3 +144x^2 )                                          352x^2 −1984x                                      −(352x^2 −1408x)                                                   −576x+2304                                         −(−576x+2304)                                                  −−−−−−−  ∴f(x)=(x−4)(x^3 −36x^2 +352x−576)⇒x=4,  x=2.0365,   x=19.337  But y=13−2(√x),⇒when x=4, y=13−2(√4)=9, when x=2.0365,  y=13−2(√(2.0365))=10.1459 and when x=19.337, y=13−2(√(19.337))=4.2052  thus (x=4, y=9),   (x=2.0365, y=10.1459)  and (x=19.337, y=4.2052)  are the possible pairs from which a solution can be found.  amount them, only the first pair satisfy the equations simultaneously.  ∴ x=4, y=9

$${From}\:{equation}\:\left(\mathrm{1}\right)\:{y}=\mathrm{13}−\mathrm{2}\sqrt{{x}} \\ $$$$\Rightarrow\:{substituting}\:{for}\:{y}\:{in}\:{equation}\left(\mathrm{2}\right),\:{gives}, \\ $$$${x}+\mathrm{2}\sqrt{\left(\mathrm{13}−\mathrm{2}\sqrt{{x}}\right)}=\mathrm{10}\:\:\:\:\therefore\:\sqrt{\left(\mathrm{13}−\mathrm{2}\sqrt{{x}}\right)}=\mathrm{5}−\frac{{x}}{\mathrm{2}} \\ $$$${Now}\:{squaring}\:{above}\:{sides},\:{gives} \\ $$$$\mathrm{13}−\mathrm{2}\sqrt{{x}}=\left(\mathrm{5}−\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} \:\:\:\:\:\:\Rightarrow\mathrm{13}−\mathrm{2}\sqrt{{x}}=\mathrm{25}−\mathrm{5}{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\therefore\:−\mathrm{2}\sqrt{{x}}=\mathrm{12}−\mathrm{5}{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}.\:\:\:{Again},\:{squaring}\:{both}\:{sides}\:{gives} \\ $$$$\mathrm{4}{x}=\mathrm{144}−\mathrm{120}{x}+\mathrm{25}{x}^{\mathrm{2}} +\mathrm{6}{x}^{\mathrm{2}} −\frac{\mathrm{5}{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{16}}.\: \\ $$$${Grouping}\:{like}\:{terms}\:{gives} \\ $$$$\frac{{x}^{\mathrm{4}} }{\mathrm{16}}−\frac{\mathrm{5}{x}^{\mathrm{3}} }{\mathrm{2}}+\mathrm{31}{x}^{\mathrm{2}} −\mathrm{124}{x}+\mathrm{144}=\mathrm{0}.\:{Multiplying}\:{through}\:{by}\:\mathrm{16}\:{gives} \\ $$$${x}^{\mathrm{4}} −\mathrm{40}{x}^{\mathrm{3}} +\mathrm{496}{x}^{\mathrm{2}} −\mathrm{1984}{x}+\mathrm{2304}=\mathrm{0}.\:{This}\:{is}\:{a}\:{polynomial}\:{of}\:{degree}\:\mathrm{4}\:{and}\:{it}\:{can}\:{be}\:{solved}\:{using}\:{factorisation}\:{or}\:{Newton}'\:{method}. \\ $$$${Let}\:{f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{40}{x}^{\mathrm{3}} +\mathrm{496}{x}^{\mathrm{2}} −\mathrm{1984}{x}+\mathrm{2304} \\ $$$$\Rightarrow{f}\left(\mathrm{4}\right)=\mathrm{4}^{\mathrm{4}} −\mathrm{40}\left(\mathrm{4}^{\mathrm{3}} \right)+\mathrm{496}\left(\mathrm{4}^{\mathrm{2}} \right)−\mathrm{1984}\left(\mathrm{4}\right)+\mathrm{2304}=\mathrm{0} \\ $$$${By}\:{the}\:{factor}\:{theorem}\:{since}\:{f}\left(\mathrm{4}\right)=\mathrm{0},\:\Rightarrow\left({x}−\mathrm{4}\right)\:{is}\:{a}\:{factor}\:{of}\:{f}\left({x}\right). \\ $$$${The}\:{other}\:{factors}\:{are}\:{found}\:{as}\:{follows}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\mathrm{36}{x}^{\mathrm{2}} \:+\mathrm{352}{x}−\mathrm{576} \\ $$$$\left({x}−\mathrm{4}\right)\sqrt{{x}^{\mathrm{4}} −\mathrm{40}{x}^{\mathrm{3}} +\mathrm{496}{x}^{\mathrm{2}} −\mathrm{1984}{x}+\mathrm{2304}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left({x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{36}{x}^{\mathrm{3}} +\mathrm{496}{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(−\mathrm{36}{x}^{\mathrm{3}} +\mathrm{144}{x}^{\mathrm{2}} \right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{352}{x}^{\mathrm{2}} −\mathrm{1984}{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{352}{x}^{\mathrm{2}} −\mathrm{1408}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{576}{x}+\mathrm{2304} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(−\mathrm{576}{x}+\mathrm{2304}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$\therefore{f}\left({x}\right)=\left({x}−\mathrm{4}\right)\left({x}^{\mathrm{3}} −\mathrm{36}{x}^{\mathrm{2}} +\mathrm{352}{x}−\mathrm{576}\right)\Rightarrow{x}=\mathrm{4},\:\:{x}=\mathrm{2}.\mathrm{0365},\:\:\:{x}=\mathrm{19}.\mathrm{337} \\ $$$${But}\:{y}=\mathrm{13}−\mathrm{2}\sqrt{{x}},\Rightarrow{when}\:{x}=\mathrm{4},\:{y}=\mathrm{13}−\mathrm{2}\sqrt{\mathrm{4}}=\mathrm{9},\:{when}\:{x}=\mathrm{2}.\mathrm{0365},\:\:{y}=\mathrm{13}−\mathrm{2}\sqrt{\mathrm{2}.\mathrm{0365}}=\mathrm{10}.\mathrm{1459}\:{and}\:{when}\:{x}=\mathrm{19}.\mathrm{337},\:{y}=\mathrm{13}−\mathrm{2}\sqrt{\mathrm{19}.\mathrm{337}}=\mathrm{4}.\mathrm{2052} \\ $$$${thus}\:\left({x}=\mathrm{4},\:{y}=\mathrm{9}\right),\:\:\:\left({x}=\mathrm{2}.\mathrm{0365},\:{y}=\mathrm{10}.\mathrm{1459}\right)\:\:{and}\:\left({x}=\mathrm{19}.\mathrm{337},\:{y}=\mathrm{4}.\mathrm{2052}\right) \\ $$$${are}\:{the}\:{possible}\:{pairs}\:{from}\:{which}\:{a}\:{solution}\:{can}\:{be}\:{found}. \\ $$$${amount}\:{them},\:{only}\:{the}\:{first}\:{pair}\:{satisfy}\:{the}\:{equations}\:{simultaneously}. \\ $$$$\therefore\:{x}=\mathrm{4},\:{y}=\mathrm{9} \\ $$

Commented by Rasheed.Sindhi last updated on 09/Jan/18

In finding factors trial method   is involved.  AnyWay ThanX-a-lot!

$$\mathrm{In}\:\mathrm{finding}\:\mathrm{factors}\:\mathrm{trial}\:\mathrm{method}\: \\ $$$$\mathrm{is}\:\mathrm{involved}. \\ $$$$\mathcal{A}{nyWay}\:\mathcal{T}{han}\mathcal{X}-{a}-{lot}! \\ $$

Commented by Rasheed.Sindhi last updated on 09/Jan/18

What if we are only sure of  real roots?

$$\mathrm{What}\:\mathrm{if}\:\mathrm{we}\:\mathrm{are}\:\mathrm{only}\:\mathrm{sure}\:\mathrm{of} \\ $$$$\boldsymbol{\mathrm{real}}\:\mathrm{roots}? \\ $$

Answered by Rasheed.Sindhi last updated on 10/Jan/18

Trying to find solution in  whole numbers.  2(√x)+y=13........(i)  x+2(√y)=10........(ii)  (i)⇒(√x)=((13−y)/2)..........(iii)  (ii)⇒x=10−2(√y)             (√x)=(√(10−2(√y)))......(iv)  (iii) & (iv)⇒((13−y)/2)=(√(10−2(√y)))  (√(p−q(√c))) can be changed into  a+b(√c) form in some cases and  the process is as under.  Let (√(10−2(√y)))=a+b(√y)    a,b∈Q       ((√(10−2(√y))))^2 =(a+b(√y))^2    a^2 +b^2 y+2ab(√y)=10−2(√y)    By comparing the coefficients  of (√y) and the terms not containing  (√y) we′ll get:  a^2 +b^2 y=10   ∧ 2ab=−2                                   ab=−1                                    b=−1/a  a^2 +(−1/a)^2 y=10  a^4 −10a^2 +y=0  a^2 =((10±(√(100−4y)))/2)    ((10±(√(100−4y)))/2) is perfect square  rational number⇒100−4y is  perfect square rational number  and non-negative.  ∴ y=0,9,16,21  y=0⇒a=((10±10)/2)=(√(10))^(×) ,0  a≠0 because in that case b=−1/0=∞  y=9⇒a=((10±8)/2)=3,1  y=16⇒a=((10±6)/2)=(√8)^(×)  ,(√2)^(×)    y=21⇒a=((10±4)/2)=(√7)^(×)  ,(√3)^(×)   So y may be 9  and a=1,3  a=3,b=−1/3 & y=9 satisfy the  following   (√(10−2(√y)))=a+b(√y)   (√(10−2(√9)))=3−(1/3)(√9)      2=2  Hence y=9  Continue

$$\mathrm{Trying}\:\mathrm{to}\:\mathrm{find}\:\mathrm{solution}\:\mathrm{in} \\ $$$$\mathrm{whole}\:\mathrm{numbers}. \\ $$$$\mathrm{2}\sqrt{\mathrm{x}}+\mathrm{y}=\mathrm{13}........\left(\mathrm{i}\right) \\ $$$$\mathrm{x}+\mathrm{2}\sqrt{\mathrm{y}}=\mathrm{10}........\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{i}\right)\Rightarrow\sqrt{\mathrm{x}}=\frac{\mathrm{13}−\mathrm{y}}{\mathrm{2}}..........\left(\mathrm{iii}\right) \\ $$$$\left(\mathrm{ii}\right)\Rightarrow\mathrm{x}=\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{x}}=\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}}}......\left(\mathrm{iv}\right) \\ $$$$\left(\mathrm{iii}\right)\:\&\:\left(\mathrm{iv}\right)\Rightarrow\frac{\mathrm{13}−\mathrm{y}}{\mathrm{2}}=\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}}} \\ $$$$\sqrt{\mathrm{p}−\mathrm{q}\sqrt{\mathrm{c}}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{changed}\:\mathrm{into} \\ $$$$\mathrm{a}+\mathrm{b}\sqrt{\mathrm{c}}\:\mathrm{form}\:\mathrm{in}\:\mathrm{some}\:\mathrm{cases}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{process}\:\mathrm{is}\:\mathrm{as}\:\mathrm{under}. \\ $$$$\mathrm{Let}\:\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}}}=\mathrm{a}+\mathrm{b}\sqrt{\mathrm{y}}\:\:\:\:\mathrm{a},\mathrm{b}\in\mathbb{Q} \\ $$$$\:\:\:\:\:\left(\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}}}\right)^{\mathrm{2}} =\left(\mathrm{a}+\mathrm{b}\sqrt{\mathrm{y}}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \mathrm{y}+\mathrm{2ab}\sqrt{\mathrm{y}}=\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}} \\ $$$$\:\:\mathrm{By}\:\mathrm{comparing}\:\mathrm{the}\:\mathrm{coefficients} \\ $$$$\mathrm{of}\:\sqrt{\mathrm{y}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{not}\:\mathrm{containing} \\ $$$$\sqrt{\mathrm{y}}\:\mathrm{we}'\mathrm{ll}\:\mathrm{get}: \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \mathrm{y}=\mathrm{10}\:\:\:\wedge\:\mathrm{2ab}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ab}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}=−\mathrm{1}/\mathrm{a} \\ $$$$\mathrm{a}^{\mathrm{2}} +\left(−\mathrm{1}/\mathrm{a}\right)^{\mathrm{2}} \mathrm{y}=\mathrm{10} \\ $$$$\mathrm{a}^{\mathrm{4}} −\mathrm{10a}^{\mathrm{2}} +\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{a}^{\mathrm{2}} =\frac{\mathrm{10}\pm\sqrt{\mathrm{100}−\mathrm{4y}}}{\mathrm{2}} \\ $$$$\:\:\frac{\mathrm{10}\pm\sqrt{\mathrm{100}−\mathrm{4y}}}{\mathrm{2}}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square} \\ $$$$\mathrm{rational}\:\mathrm{number}\Rightarrow\mathrm{100}−\mathrm{4y}\:\mathrm{is} \\ $$$$\mathrm{perfect}\:\mathrm{square}\:\mathrm{rational}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{non}-\mathrm{negative}. \\ $$$$\therefore\:\mathrm{y}=\mathrm{0},\mathrm{9},\mathrm{16},\mathrm{21} \\ $$$$\mathrm{y}=\mathrm{0}\Rightarrow\mathrm{a}=\frac{\mathrm{10}\pm\mathrm{10}}{\mathrm{2}}=\overset{×} {\sqrt{\mathrm{10}}},\mathrm{0} \\ $$$$\mathrm{a}\neq\mathrm{0}\:\mathrm{because}\:\mathrm{in}\:\mathrm{that}\:\mathrm{case}\:\mathrm{b}=−\mathrm{1}/\mathrm{0}=\infty \\ $$$$\mathrm{y}=\mathrm{9}\Rightarrow\mathrm{a}=\frac{\mathrm{10}\pm\mathrm{8}}{\mathrm{2}}=\mathrm{3},\mathrm{1} \\ $$$$\mathrm{y}=\mathrm{16}\Rightarrow\mathrm{a}=\frac{\mathrm{10}\pm\mathrm{6}}{\mathrm{2}}=\overset{×} {\sqrt{\mathrm{8}}}\:,\overset{×} {\sqrt{\mathrm{2}}}\: \\ $$$$\mathrm{y}=\mathrm{21}\Rightarrow\mathrm{a}=\frac{\mathrm{10}\pm\mathrm{4}}{\mathrm{2}}=\overset{×} {\sqrt{\mathrm{7}}}\:,\overset{×} {\sqrt{\mathrm{3}}} \\ $$$$\mathrm{So}\:\mathrm{y}\:\mathrm{may}\:\mathrm{be}\:\mathrm{9}\:\:\mathrm{and}\:\mathrm{a}=\mathrm{1},\mathrm{3} \\ $$$$\mathrm{a}=\mathrm{3},\mathrm{b}=−\mathrm{1}/\mathrm{3}\:\&\:\mathrm{y}=\mathrm{9}\:\mathrm{satisfy}\:\mathrm{the} \\ $$$$\mathrm{following} \\ $$$$\:\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{y}}}=\mathrm{a}+\mathrm{b}\sqrt{\mathrm{y}}\: \\ $$$$\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{9}}}=\mathrm{3}−\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{9}} \\ $$$$\:\:\:\:\mathrm{2}=\mathrm{2} \\ $$$$\mathrm{Hence}\:\mathrm{y}=\mathrm{9} \\ $$$$\mathrm{Continue} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com