Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 27594 by abdo imad last updated on 10/Jan/18

solve the  differencial equation  (1−x^2 )y^′  −xy =1   .

$${solve}\:{the}\:\:{differencial}\:{equation} \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}^{'} \:−{xy}\:=\mathrm{1}\:\:\:. \\ $$

Commented by abdo imad last updated on 12/Jan/18

e.h⇒(1−x^2 )y^′ −xy=0⇔ (1−x^2 )y^, =xy   ⇔ (y^′ /y) = (x/(1−x^2 ))  ⇔ ln/y/= ∫(x/(1−x^2 ))dx +k  ln/y/=−(1/2) ln/1−x^2 / +k  = ln((1/((√(/1−x^2 )) )))+k  ⇒ y=(λ/(√(/1−x^2 /))) let find λ by mvc method  if −1<x<1    y=  λ(1−x^2 )^(−(1/2))  so  y^′ =λ^, (1−x^2 )^(−(1/2)) −(1/2)λ(−2x)(1−x^2 )^(−(3/2))   = λ^′ (1−x^2 )^(−(1/2))  +λx(1−x^2 )^(−(3/2))   equ.⇔(1−x^2 )λ^′ (1−x^2 )^(−(1/2))  +λx(1−x^2 )(1−x^2 )^(−(3/2))  −λx (1−x^2 )^(−(1/2)) =1  λ′(√(1−x^2 )) =1  ⇒  λ^′ = (1/(√(1−x^2 )))  ⇒  λ= ∫  (dx/(√(1−x^2 ))) +c  λ=arcsinx +c   and  y(x)=(1/(√( 1−x^2 )))( arcsinx +c)  y(x)= ((arcsinx)/(√(1−x^2 ))) +(c/(√(1 −x^2 )))   .  if  1−x^2  <0 ⇔/x/ >1   y= (λ/(√( x^2 −1))) and the same method   give the result.

$${e}.{h}\Rightarrow\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}^{'} −{xy}=\mathrm{0}\Leftrightarrow\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}^{,} ={xy}\: \\ $$$$\Leftrightarrow\:\frac{{y}^{'} }{{y}}\:=\:\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\Leftrightarrow\:{ln}/{y}/=\:\int\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:+{k} \\ $$$${ln}/{y}/=−\frac{\mathrm{1}}{\mathrm{2}}\:{ln}/\mathrm{1}−{x}^{\mathrm{2}} /\:+{k}\:\:=\:{ln}\left(\frac{\mathrm{1}}{\sqrt{/\mathrm{1}−{x}^{\mathrm{2}} }\:}\right)+{k} \\ $$$$\Rightarrow\:{y}=\frac{\lambda}{\sqrt{/\mathrm{1}−{x}^{\mathrm{2}} /}}\:{let}\:{find}\:\lambda\:{by}\:{mvc}\:{method} \\ $$$${if}\:−\mathrm{1}<{x}<\mathrm{1}\:\:\:\:{y}=\:\:\lambda\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{so} \\ $$$${y}^{'} =\lambda^{,} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{2}}\lambda\left(−\mathrm{2}{x}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$=\:\lambda^{'} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:+\lambda{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${equ}.\Leftrightarrow\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\lambda^{'} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:+\lambda{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \:−\lambda{x}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1} \\ $$$$\lambda'\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:=\mathrm{1}\:\:\Rightarrow\:\:\lambda^{'} =\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\:\Rightarrow\:\:\lambda=\:\int\:\:\frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:+{c} \\ $$$$\lambda={arcsinx}\:+{c}\:\:\:{and}\:\:{y}\left({x}\right)=\frac{\mathrm{1}}{\sqrt{\:\mathrm{1}−{x}^{\mathrm{2}} }}\left(\:{arcsinx}\:+{c}\right) \\ $$$${y}\left({x}\right)=\:\frac{{arcsinx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:+\frac{{c}}{\sqrt{\mathrm{1}\:−{x}^{\mathrm{2}} }}\:\:\:. \\ $$$${if}\:\:\mathrm{1}−{x}^{\mathrm{2}} \:<\mathrm{0}\:\Leftrightarrow/{x}/\:>\mathrm{1}\:\:\:{y}=\:\frac{\lambda}{\sqrt{\:{x}^{\mathrm{2}} −\mathrm{1}}}\:{and}\:{the}\:{same}\:{method}\: \\ $$$${give}\:{the}\:{result}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com