All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 27594 by abdo imad last updated on 10/Jan/18
solvethedifferencialequation(1−x2)y′−xy=1.
Commented by abdo imad last updated on 12/Jan/18
e.h⇒(1−x2)y′−xy=0⇔(1−x2)y,=xy⇔y′y=x1−x2⇔ln/y/=∫x1−x2dx+kln/y/=−12ln/1−x2/+k=ln(1/1−x2)+k⇒y=λ/1−x2/letfindλbymvcmethodif−1<x<1y=λ(1−x2)−12soy′=λ,(1−x2)−12−12λ(−2x)(1−x2)−32=λ′(1−x2)−12+λx(1−x2)−32equ.⇔(1−x2)λ′(1−x2)−12+λx(1−x2)(1−x2)−32−λx(1−x2)−12=1λ′1−x2=1⇒λ′=11−x2⇒λ=∫dx1−x2+cλ=arcsinx+candy(x)=11−x2(arcsinx+c)y(x)=arcsinx1−x2+c1−x2.if1−x2<0⇔/x/>1y=λx2−1andthesamemethodgivetheresult.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com