Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27596 by abdo imad last updated on 10/Jan/18

find  ∫  ^3 (√( x^2 −x^3 ))  dx

find3x2x3dx

Commented by abdo imad last updated on 28/Jan/18

I= ∫   ^3 (√(x^3 ((1/x)−1))) dx= ∫ x(√((1/x)−1)) dx let use the ch.  (√((1/x)−1))=t ⇒(1/x) −1=t^2 ⇒(1/x)=1+t^2  ⇒x= (1/(1+t^2 ))  I= ∫ (1/(1+t^2 )) t .((−2t)/((1+t^2 )^2 ))dt = −2 ∫   (t^2 /((1+t^2 )^3 ))dt  =−2 ∫((1+t^2 −1)/((1+t^2 )^3 ))dt= −2 ∫ (dt/((1+t^2 )^2 ))  +2 ∫   (dt/((1+t^2 )^3 )) but  the ch.t=tanθ give  I= −2 ∫((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ  +2 ∫ ((1+tan^2 θ)/((1+tan^2 θ)^3 )) dθ  =−2 ∫   (dθ/(1+tan^2 θ)) +2 ∫   (dθ/((1+tan^2 θ)^2 ))  =−2 ∫cos^2 θ dθ  +2 ∫ cos^4 θdθ   but we have  ∫cos^2 θdθ=∫((1+cos(2θ))/2)dθ=(1/2)θ +(1/4)sin(2θ)  ∫cos^4 θdθ= ∫(((1+cos(2θ))/2))^2 dθ=(1/4) ∫ (1+2cos(2θ)+ ((1+cos(4θ))/2))dθ  =(1/4)θ  +(1/4)sin(2θ) +(1/8)θ  +(1/(32)) sin(4θ)  =(3/8)θ   +(1/4)sin(2θ) +(1/(32))sin(4θ) so  I=−θ−(1/2)sin(2θ) +(3/4)θ +(1/2)sin(2θ) +(1/(16))sin(4θ)  I=((−1)/4)θ  +(1/(16)) sin(4θ)  with θ=arctan((√((1/x)−1))).

I=3x3(1x1)dx=x1x1dxletusethech.1x1=t1x1=t21x=1+t2x=11+t2I=11+t2t.2t(1+t2)2dt=2t2(1+t2)3dt=21+t21(1+t2)3dt=2dt(1+t2)2+2dt(1+t2)3butthech.t=tanθgiveI=21+tan2θ(1+tan2θ)2dθ+21+tan2θ(1+tan2θ)3dθ=2dθ1+tan2θ+2dθ(1+tan2θ)2=2cos2θdθ+2cos4θdθbutwehavecos2θdθ=1+cos(2θ)2dθ=12θ+14sin(2θ)cos4θdθ=(1+cos(2θ)2)2dθ=14(1+2cos(2θ)+1+cos(4θ)2)dθ=14θ+14sin(2θ)+18θ+132sin(4θ)=38θ+14sin(2θ)+132sin(4θ)soI=θ12sin(2θ)+34θ+12sin(2θ)+116sin(4θ)I=14θ+116sin(4θ)withθ=arctan(1x1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com