Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 27598 by abdo imad last updated on 10/Jan/18

find ∫∫∫_D (x^2 +y^2 )dxdxy   with  D={x,y,z)∈R^3    /x^2  +y^2 +z^2  ≤1  and z≥0 }

$${find}\:\int\int\int_{{D}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdxy}\:\:\:{with} \\ $$$$\left.{D}=\left\{{x},{y},{z}\right)\in{R}^{\mathrm{3}} \:\:\:/{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:\leqslant\mathrm{1}\:\:{and}\:{z}\geqslant\mathrm{0}\:\right\} \\ $$

Commented by abdo imad last updated on 21/Jan/18

we have z^2 ≤ 1−(x^2 +y^2 ) ≤1 and z≥0 ⇒   0≤z≤1 so  I= ∫∫∫ (x^2 +y^2  +z^2 )dxdydz = ∫_0 ^1   (∫∫_W (x^2 +y^2 )dxdy)dz  with W ={ (x,y)∈R^2  / x^2 +y^2  ≤1−z^2   and z≥0} let define  a diffeomorphisme on W we use the polar coordinate  x=r cosθ  and y =rsinθ  we must have  0<r ≤(√(1−z^2 ))  and 0≤θ≤2π  ∫∫_W ( x^2 +y^2 )dxdy= ∫∫_(0<r≤(√(1−z^2  ))  and 0≤θ≤2π) r^2 rdrdθ  = 2π ∫_0 ^(√(1−z^2 ))    r^3 dr  = (π/2) [ r^4 ]_0 ^(√(1−z^2 ))   = (π/2)(1−z^2 )^2   = (π/2)( z^4  −2z^2 +1) and  I= (π/2) ∫_0 ^1  (z^4  −2z^2 +1)dz =(π/2) [  (z^5 /5) −(2/3) z^3  +z]_0 ^1   = (π/2) ( (1/5) −(2/3) +1) = (π/2)( (1/5) +(1/3)) = ((8π)/(30)) = ((4π)/(15)) .

$${we}\:{have}\:{z}^{\mathrm{2}} \leqslant\:\mathrm{1}−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:\leqslant\mathrm{1}\:{and}\:{z}\geqslant\mathrm{0}\:\Rightarrow\:\:\:\mathrm{0}\leqslant{z}\leqslant\mathrm{1}\:{so} \\ $$$${I}=\:\int\int\int\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \right){dxdydz}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\int\int_{{W}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy}\right){dz} \\ $$$${with}\:{W}\:=\left\{\:\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\leqslant\mathrm{1}−{z}^{\mathrm{2}} \:\:{and}\:{z}\geqslant\mathrm{0}\right\}\:{let}\:{define} \\ $$$${a}\:{diffeomorphisme}\:{on}\:{W}\:{we}\:{use}\:{the}\:{polar}\:{coordinate} \\ $$$${x}={r}\:{cos}\theta\:\:{and}\:{y}\:={rsin}\theta\:\:{we}\:{must}\:{have}\:\:\mathrm{0}<{r}\:\leqslant\sqrt{\mathrm{1}−{z}^{\mathrm{2}} } \\ $$$${and}\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$$$\int\int_{{W}} \left(\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy}=\:\int\int_{\mathrm{0}<{r}\leqslant\sqrt{\mathrm{1}−{z}^{\mathrm{2}} \:}\:\:{and}\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi} {r}^{\mathrm{2}} {rdrd}\theta \\ $$$$=\:\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }} \:\:\:{r}^{\mathrm{3}} {dr}\:\:=\:\frac{\pi}{\mathrm{2}}\:\left[\:{r}^{\mathrm{4}} \right]_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }} \:\:=\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−{z}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$=\:\frac{\pi}{\mathrm{2}}\left(\:{z}^{\mathrm{4}} \:−\mathrm{2}{z}^{\mathrm{2}} +\mathrm{1}\right)\:{and} \\ $$$${I}=\:\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({z}^{\mathrm{4}} \:−\mathrm{2}{z}^{\mathrm{2}} +\mathrm{1}\right){dz}\:=\frac{\pi}{\mathrm{2}}\:\left[\:\:\frac{{z}^{\mathrm{5}} }{\mathrm{5}}\:−\frac{\mathrm{2}}{\mathrm{3}}\:{z}^{\mathrm{3}} \:+{z}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\:\frac{\pi}{\mathrm{2}}\:\left(\:\frac{\mathrm{1}}{\mathrm{5}}\:−\frac{\mathrm{2}}{\mathrm{3}}\:+\mathrm{1}\right)\:=\:\frac{\pi}{\mathrm{2}}\left(\:\frac{\mathrm{1}}{\mathrm{5}}\:+\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{8}\pi}{\mathrm{30}}\:=\:\frac{\mathrm{4}\pi}{\mathrm{15}}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com