All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 27598 by abdo imad last updated on 10/Jan/18
find∫∫∫D(x2+y2)dxdxywithD={x,y,z)∈R3/x2+y2+z2⩽1andz⩾0}
Commented by abdo imad last updated on 21/Jan/18
wehavez2⩽1−(x2+y2)⩽1andz⩾0⇒0⩽z⩽1soI=∫∫∫(x2+y2+z2)dxdydz=∫01(∫∫W(x2+y2)dxdy)dzwithW={(x,y)∈R2/x2+y2⩽1−z2andz⩾0}letdefineadiffeomorphismeonWweusethepolarcoordinatex=rcosθandy=rsinθwemusthave0<r⩽1−z2and0⩽θ⩽2π∫∫W(x2+y2)dxdy=∫∫0<r⩽1−z2and0⩽θ⩽2πr2rdrdθ=2π∫01−z2r3dr=π2[r4]01−z2=π2(1−z2)2=π2(z4−2z2+1)andI=π2∫01(z4−2z2+1)dz=π2[z55−23z3+z]01=π2(15−23+1)=π2(15+13)=8π30=4π15.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com