All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27600 by abdo imad last updated on 10/Jan/18
find∫0πt2+sintdt
Commented by abdo imad last updated on 11/Jan/18
letputI=∫0πt2+sintdtandthech.tan(t2)=x⇔t=2arctanxI=∫0∞2arctanx2+2x1+x22dx1+x2=2∫0∞arctanx1+x2+2xdx=2∫0∞arctanx(x+1)2dxthentheintegrationperpartsgive∫0∞arctanx(x+1)2dx=[−1x+1arctanx]0∝−∫0∞−1x+1dx1+x2=∫0∞dx(x+1)(1+x2)letdecomposerationalfractionF(x)=1(x+1)(1+x2)⇒F(x)=ax+1+bx+c1+x2a=limx−>−1(x+1)F(x)=12limx−>∝xF(x)=0=a+b⇒b=−12soF(x)=12(x+1)+−x2+c1+x2,F(0)=1=12+c⇒c=12F(x)=12(x+1)−12x−11+x2I=∫0∞dxx+1−∫0∞x−11+x2dx=∫0∞dxx+1−12∫0∞2x−21+x2dxI=∫0∞(1x+1−122x1+x2)dx+∫0∞dx1+x2I=[ln/x+1/−12ln/1+x2/]0∝+π2I=[ln/x+11+x2/]0∝+π2=0+π2∫0πt2+sintdt=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com