Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27600 by abdo imad last updated on 10/Jan/18

find   ∫_0 ^π   (t/(2+sint)) dt

find0πt2+sintdt

Commented by abdo imad last updated on 11/Jan/18

let put I=∫_0 ^π   (t/(2+sint))dt and the ch. tan((t/2))=x⇔   t=2arctanx  I= ∫_0 ^∞     ((2arctanx)/(2+((2x)/(1+x^2 )))) ((2dx)/(1+x^2 ))= 2 ∫_0 ^∞   ((arctanx)/(1+x^2 +2x))dx  =2∫_0 ^∞    ((arctanx)/((x+1)^2 ))dx  then the integration per parts give  ∫_0 ^∞ ((arctanx)/((x+1)^2 ))dx= [−(1/(x+1)) arctanx]_0 ^∝ − ∫_0 ^∞ −(1/(x+1)) (dx/(1+x^2 ))  = ∫_0 ^∞   (dx/((x+1)(1+x^2 ))) let decompose rational fraction  F(x)= (1/((x+1)(1+x^2 )))⇒F(x)= (a/(x+1)) + ((bx+c)/(1+x^2 ))  a= lim_(x−>−1^ )  (x+1)F(x)= (1/2)  lim_(x−>∝) xF(x)=0=a+b⇒b=−(1/2) so  F(x)= (1/(2(x+1))) +  ((((−x)/2)+c)/(1+x^2 ))  ,F(0)=1= (1/2)+c⇒c=(1/2)  F(x)= (1/(2(x+1))) −(1/2) ((x−1)/(1+x^2 ))  I= ∫_0 ^∞ (dx/(x+1)) −∫_0 ^∞   ((x−1)/(1+x^2 ))dx  = ∫_0 ^∞  (dx/(x+1))  −(1/2) ∫_0 ^∞  ((2x−2)/(1+x^2 ))dx  I= ∫_0 ^∞ (   (1/(x+1)) −(1/2)((2x)/(1+x^2 )))dx + ∫_0 ^∞  (dx/(1+x^2 ))  I=[ln/x+1/−(1/2)ln/1+x^2 /]_0 ^∝  + (π/2)  I=[ln/((x+1)/(√(1+x^2 )))/ ]_0 ^∝ +(π/2)=0+(π/2)  ∫_0 ^π  (t/(2+sint))dt = (π/2) .

letputI=0πt2+sintdtandthech.tan(t2)=xt=2arctanxI=02arctanx2+2x1+x22dx1+x2=20arctanx1+x2+2xdx=20arctanx(x+1)2dxthentheintegrationperpartsgive0arctanx(x+1)2dx=[1x+1arctanx]001x+1dx1+x2=0dx(x+1)(1+x2)letdecomposerationalfractionF(x)=1(x+1)(1+x2)F(x)=ax+1+bx+c1+x2a=limx>1(x+1)F(x)=12limx>∝xF(x)=0=a+bb=12soF(x)=12(x+1)+x2+c1+x2,F(0)=1=12+cc=12F(x)=12(x+1)12x11+x2I=0dxx+10x11+x2dx=0dxx+11202x21+x2dxI=0(1x+1122x1+x2)dx+0dx1+x2I=[ln/x+1/12ln/1+x2/]0+π2I=[ln/x+11+x2/]0+π2=0+π20πt2+sintdt=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com