Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 27604 by 0722136841 last updated on 10/Jan/18

Let   S_n =(1/1^3 ) + ((1+2)/(1^3 +2^3 )) +...+((1+2+...+n)/(1^3 +2^3 +...+n^3 )); n=1,2,3,..  Then S_n  is greater than

$$\mathrm{Let}\: \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}+\mathrm{2}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} }\:+...+\frac{\mathrm{1}+\mathrm{2}+...+{n}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +...+{n}^{\mathrm{3}} };\:{n}=\mathrm{1},\mathrm{2},\mathrm{3},.. \\ $$$$\mathrm{Then}\:{S}_{{n}} \:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$

Commented by abdo imad last updated on 11/Jan/18

S_n = Σ_(k=1) ^n  ((Σ_(p=1) ^k  p)/(Σ_(p=1) ^k p^3 ))   let simplify  S_n   we know that  Σ_(p=1) ^k p=((k(k+1))/2)  and  Σ_(p=1) ^k p^3  =(((k(k+1))/2))^2   S_n = Σ_(k=1) ^n  (2/(k(k+1)))= 2 Σ_(k=1) ^n ( (1/k) −(1/(k+1)))  S_n = 2( 1−(1/2) +(1/2) −(1/3) +... +(1/n) −(1/(n+1)))= 2(1−(1/(n+1)))  = ((2n)/(n+1))   but    n+1< 2n for all n>1 ⇒ (1/(n+1))>(1/(2n))  ⇒  ((2n)/(n+1)) >(1/2) ⇒    S_n > (1/2)   and also we have    (1/2)< S_n  <2  and lim_(n−>∝) S_n = 2

$${S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\sum_{{p}=\mathrm{1}} ^{{k}} \:{p}}{\sum_{{p}=\mathrm{1}} ^{{k}} {p}^{\mathrm{3}} }\:\:\:{let}\:{simplify}\:\:{S}_{{n}} \\ $$$${we}\:{know}\:{that}\:\:\sum_{{p}=\mathrm{1}} ^{{k}} {p}=\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}\:\:{and}\:\:\sum_{{p}=\mathrm{1}} ^{{k}} {p}^{\mathrm{3}} \:=\left(\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}}{{k}\left({k}+\mathrm{1}\right)}=\:\mathrm{2}\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(\:\frac{\mathrm{1}}{{k}}\:−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right) \\ $$$${S}_{{n}} =\:\mathrm{2}\left(\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{3}}\:+...\:+\frac{\mathrm{1}}{{n}}\:−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)=\:\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=\:\frac{\mathrm{2}{n}}{{n}+\mathrm{1}}\:\:\:{but}\:\:\:\:{n}+\mathrm{1}<\:\mathrm{2}{n}\:{for}\:{all}\:{n}>\mathrm{1}\:\Rightarrow\:\frac{\mathrm{1}}{{n}+\mathrm{1}}>\frac{\mathrm{1}}{\mathrm{2}{n}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}{n}}{{n}+\mathrm{1}}\:>\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:\:\:\:{S}_{{n}} >\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:{and}\:{also}\:{we}\:{have}\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}<\:{S}_{{n}} \:<\mathrm{2} \\ $$$${and}\:{lim}_{{n}−>\propto} {S}_{{n}} =\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com