Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27613 by abdo imad last updated on 10/Jan/18

find the value of   ∫_0 ^∞   e^(−[x] −x) dx  .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]\:−{x}} {dx}\:\:. \\ $$

Commented by abdo imad last updated on 12/Jan/18

I_n = Σ_(k=0) ^n  ∫_k ^(k+1) e^(−[x]−x) dx  I=lim I_n   I_n  = Σ_(k=) ^n e^(−k)  [e^(−x) ]_k ^(k+1) = Σ_(k=0) ^n e^(−k) ( e^(−k)  −e^(−k−1) )   I_n = Σ_(k=0) ^n  e^(−2k)   −e^(−1) Σ_(k=0) ^n  e^(−2k)   =(1−e^(−1) ) Σ_(k=0) ^n (e^(−2) )^k   ∫_0 ^∞   e^(−[x]−x) dx = lim_(n−>∝)  I_n  =(1−e^(−1) ).(1/(1−e^(−2) ))  = ((e^2 (1−e^(−1) ))/(e^2 −1))= ((e^2  −e)/(e^2 −1))=((e(e−1))/((e+1)(e−1)))=  (e/(e+1)) .

$${I}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{{k}} ^{{k}+\mathrm{1}} {e}^{−\left[{x}\right]−{x}} {dx}\:\:{I}={lim}\:{I}_{{n}} \\ $$$${I}_{{n}} \:=\:\sum_{{k}=} ^{{n}} {e}^{−{k}} \:\left[{e}^{−{x}} \right]_{{k}} ^{{k}+\mathrm{1}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} {e}^{−{k}} \left(\:{e}^{−{k}} \:−{e}^{−{k}−\mathrm{1}} \right)\: \\ $$$${I}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−\mathrm{2}{k}} \:\:−{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−\mathrm{2}{k}} \:\:=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({e}^{−\mathrm{2}} \right)^{{k}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]−{x}} {dx}\:=\:{lim}_{{n}−>\propto} \:{I}_{{n}} \:=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right).\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} } \\ $$$$=\:\frac{{e}^{\mathrm{2}} \left(\mathrm{1}−{e}^{−\mathrm{1}} \right)}{{e}^{\mathrm{2}} −\mathrm{1}}=\:\frac{{e}^{\mathrm{2}} \:−{e}}{{e}^{\mathrm{2}} −\mathrm{1}}=\frac{{e}\left({e}−\mathrm{1}\right)}{\left({e}+\mathrm{1}\right)\left({e}−\mathrm{1}\right)}=\:\:\frac{{e}}{{e}+\mathrm{1}}\:. \\ $$

Answered by prakash jain last updated on 12/Jan/18

=Σ_(i=0) ^∞ e^(−i) ∫_i ^(i+1) e^(−x) dx  =Σ_(i=0) ^∞ e^(−i) [−e^(−x) ]_i ^(i+1)   =Σ_(i=0) ^∞ (e^(−i) /e^i )−(e^(−i) /e^(i+1) )  =Σ_(i=0) ^∞ (1/e^(2i) )−(1/e^(2i+1) )  =Σ_(i=0) ^∞ (1/e^(2i) )−Σ_(i=0) ^∞ (1/e^(2i+1) )  =(1/(1−(1/e^2 )))−((1/e)/(1−(1/e^2 )))  =((e(e−1))/(e^2 −1))=(e/(e+1))

$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{i}} \int_{{i}} ^{{i}+\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{i}} \left[−{e}^{−{x}} \right]_{{i}} ^{{i}+\mathrm{1}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{−{i}} }{{e}^{{i}} }−\frac{{e}^{−{i}} }{{e}^{{i}+\mathrm{1}} } \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}} }−\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}} }−\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }}−\frac{\mathrm{1}/{e}}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }} \\ $$$$=\frac{{e}\left({e}−\mathrm{1}\right)}{{e}^{\mathrm{2}} −\mathrm{1}}=\frac{{e}}{{e}+\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com