Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27616 by abdo imad last updated on 10/Jan/18

find  ∫_0 ^1  e^(−2x) ln(1+x)dx  .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:. \\ $$

Commented by abdo imad last updated on 15/Jan/18

let put I= ∫_0 ^1  e^(−2x) ln(1+x)dx  let integrate par parts  I= [ ((−1)/2) e^(−2x)  ln(1+x)]_0 ^1  − ∫_0 ^1  ((−1)/2) e^(−2x)   (dx/(1+x))  =−(1/2) e^(−2) ln(2 ) + (1/2) ∫_0 ^1   (e^(−2x) /(1+x))dx  but  ∫_0 ^1   (e^(−2x) /(1+x)) dx= ∫_0 ^1  e^(−2x) ( Σ_(n0) ^∝ (−1)^n  x^n )dx  = Σ_(n=0) ^∝  (−1)^n  ∫_0 ^1   x^n  e^(−2x) dx= Σ_(n=0) ^∝ (−1)^n A_n   A_n = ∫_0 ^1  x^n e^(−2x) dx   with parts u=x^n  and v^, = e^(−2x)   A_n = −(1/2)e^(−2x) x^n ]_0 ^(1 ) − ∫_0 ^1 n x^(n−1) (−(1/2) e^(−2x) )dx  A_n = −(1/(2e^2 )) +(n/2) A_(n−1)   ⇒2A_n = n A_(n−1)   −(1/e^2 )   and we find  A_n  by  recurence...be continued.....

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:{let}\:{integrate}\:{par}\:{parts} \\ $$$${I}=\:\left[\:\frac{−\mathrm{1}}{\mathrm{2}}\:{e}^{−\mathrm{2}{x}} \:{ln}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{−\mathrm{1}}{\mathrm{2}}\:{e}^{−\mathrm{2}{x}} \:\:\frac{{dx}}{\mathrm{1}+{x}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−\mathrm{2}} {ln}\left(\mathrm{2}\:\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−\mathrm{2}{x}} }{\mathrm{1}+{x}}{dx}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−\mathrm{2}{x}} }{\mathrm{1}+{x}}\:{dx}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} \left(\:\sum_{{n}\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \right){dx} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:{e}^{−\mathrm{2}{x}} {dx}=\:\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {A}_{{n}} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {e}^{−\mathrm{2}{x}} {dx}\:\:\:{with}\:{parts}\:{u}={x}^{{n}} \:{and}\:{v}^{,} =\:{e}^{−\mathrm{2}{x}} \\ $$$$\left.{A}_{{n}} =\:−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{2}{x}} {x}^{{n}} \right]_{\mathrm{0}} ^{\mathrm{1}\:} −\:\int_{\mathrm{0}} ^{\mathrm{1}} {n}\:{x}^{{n}−\mathrm{1}} \left(−\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−\mathrm{2}{x}} \right){dx} \\ $$$${A}_{{n}} =\:−\frac{\mathrm{1}}{\mathrm{2}{e}^{\mathrm{2}} }\:+\frac{{n}}{\mathrm{2}}\:{A}_{{n}−\mathrm{1}} \:\:\Rightarrow\mathrm{2}{A}_{{n}} =\:{n}\:{A}_{{n}−\mathrm{1}} \:\:−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\:\:\:{and}\:{we}\:{find} \\ $$$${A}_{{n}} \:{by}\:\:{recurence}...{be}\:{continued}..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com