Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27619 by abdo imad last updated on 11/Jan/18

find the value of ∫_0 ^∞  ((cos(2x))/((1+x^2 )^2 ))dx.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\ $$

Commented by abdo imad last updated on 12/Jan/18

let put I= ∫_0 ^∞  ((cos(2x))/((1+x^2 )^2 ))dx  I= (1/2) ∫_R   ((cos(2x))/((1+x^2 )^2 ))dx=(1/2) Re( ∫_R   (e^(i2x) /((1+x^2 )^2 ))dx )  let introduce  the complex function  f(z)= (e^(i(2z)) /((1+z^2 )^2 )) we have  f(z)=  (e^(i(2z)) /((z−i)^2 (z+i)^2 )) so the poles  of f are i and −i (double poles)  ∫_R f(z)dz= 2iπ Res(f,i)(   we dont take −i because Im(−i)<0)  Re(f,i) =lim_(z−>i)    (1/((2−1)!)) (d/dz)( (z−i)^2 f(z))  =lim_(z−>i ) (d/dz)((e^(i(2z)) /((z+i)^2 )))=  =lim_(z−>i)       ((2i e^(i(2z)) (z+i)^2  −2(z+i) e^(i(2z)) )/((z+i)^4 ))  =lim_(z−>i)        ((2i e^(i(2z)) (z+i) −2 e^(i(2z)) )/((z+i)^3 ))  =     ((2i e^(−2) (2i) −2 e^(−2) )/((2i)^3 ))=  ((−4 e^(−2) −2 e^(−2) )/(−8i))=((6 e^(−2) )/(8i)) = ((3 e^(−2) )/(4i))  ∫_R f(z)dz= 2iπ.((3 e^(−2) )/(4i))  = ((3π)/2) e^(−2)   I= (1/2) ∫_R ^ f(z)dz = ((3π)/4) e^(−2) = ((3π)/(4 e^2 )) .

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{{R}} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\:{Re}\left(\:\int_{{R}} \:\:\frac{{e}^{{i}\mathrm{2}{x}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\right) \\ $$$${let}\:{introduce}\:\:{the}\:{complex}\:{function} \\ $$$${f}\left({z}\right)=\:\frac{{e}^{{i}\left(\mathrm{2}{z}\right)} }{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{we}\:{have}\:\:{f}\left({z}\right)=\:\:\frac{{e}^{{i}\left(\mathrm{2}{z}\right)} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:{so}\:{the}\:{poles} \\ $$$${of}\:{f}\:{are}\:{i}\:{and}\:−{i}\:\left({double}\:{poles}\right) \\ $$$$\int_{{R}} {f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\:{Res}\left({f},{i}\right)\left(\:\:\:{we}\:{dont}\:{take}\:−{i}\:{because}\:{Im}\left(−{i}\right)<\mathrm{0}\right) \\ $$$${Re}\left({f},{i}\right)\:={lim}_{{z}−>{i}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\:\frac{{d}}{{dz}}\left(\:\left({z}−{i}\right)^{\mathrm{2}} {f}\left({z}\right)\right) \\ $$$$={lim}_{{z}−>{i}\:} \frac{{d}}{{dz}}\left(\frac{{e}^{{i}\left(\mathrm{2}{z}\right)} }{\left({z}+{i}\right)^{\mathrm{2}} }\right)= \\ $$$$={lim}_{{z}−>{i}} \:\:\:\:\:\:\frac{\mathrm{2}{i}\:{e}^{{i}\left(\mathrm{2}{z}\right)} \left({z}+{i}\right)^{\mathrm{2}} \:−\mathrm{2}\left({z}+{i}\right)\:{e}^{{i}\left(\mathrm{2}{z}\right)} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}−>{i}} \:\:\:\:\:\:\:\frac{\mathrm{2}{i}\:{e}^{{i}\left(\mathrm{2}{z}\right)} \left({z}+{i}\right)\:−\mathrm{2}\:{e}^{{i}\left(\mathrm{2}{z}\right)} }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\:\:\:\:\:\frac{\mathrm{2}{i}\:{e}^{−\mathrm{2}} \left(\mathrm{2}{i}\right)\:−\mathrm{2}\:{e}^{−\mathrm{2}} }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }=\:\:\frac{−\mathrm{4}\:{e}^{−\mathrm{2}} −\mathrm{2}\:{e}^{−\mathrm{2}} }{−\mathrm{8}{i}}=\frac{\mathrm{6}\:{e}^{−\mathrm{2}} }{\mathrm{8}{i}}\:=\:\frac{\mathrm{3}\:{e}^{−\mathrm{2}} }{\mathrm{4}{i}} \\ $$$$\int_{{R}} {f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi.\frac{\mathrm{3}\:{e}^{−\mathrm{2}} }{\mathrm{4}{i}}\:\:=\:\frac{\mathrm{3}\pi}{\mathrm{2}}\:{e}^{−\mathrm{2}} \\ $$$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{{R}} ^{} {f}\left({z}\right){dz}\:=\:\frac{\mathrm{3}\pi}{\mathrm{4}}\:{e}^{−\mathrm{2}} =\:\frac{\mathrm{3}\pi}{\mathrm{4}\:{e}^{\mathrm{2}} }\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com