All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27620 by abdo imad last updated on 11/Jan/18
findthevalueof∫0∞(−1)x23+x2dx.
Commented by abdo imad last updated on 12/Jan/18
letputI=∫0∞(−1)x23+x2dxdueto(−1)=eiπI=∫0∞eiπx23+x2dx=12∫Reiπx23+x2dxletintroducethecomplexfunctionf(z)=eiπz2z2+3wehavef(z)=eiπz2(z−i3)(z+i3)thepolesoffarez1=i3andz2=−i3theresidustheoremgive∫Rf(z)dz=2iπRes(f,i3)butRes(f,i3)=limz−>i3(z−i3)f(z)=limz−>i3eiπz2z+i3=eiπ(−3)2i3=(−1)−32i3=−12i3∫Rf(z)dz=2iπ.−12i3=−π3andI=−π23.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com