Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27620 by abdo imad last updated on 11/Jan/18

find the value of  ∫_0 ^∞  (((−1)^x^2  )/(3+x^2 ))dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:. \\ $$

Commented by abdo imad last updated on 12/Jan/18

let put I= ∫_0 ^∞  (((−1)^x^2  )/(3+x^2 ))dx   due to (−1)=e^(iπ)   I = ∫_0 ^∞    (e^(iπx^2 ) /(3+x^2 ))dx = (1/2) ∫_R   (e^(iπx^2 ) /(3+x^2 ))dx  let introduce the  complex function  f(z)= (e^(iπz^2 ) /(z^2  +3))  we have  f(z)= (e^(iπz^2 ) /((z −i(√3))(z+i(√(3)))))  the poles of f are z_1 = i(√3) and  z_2 =−i(√3)   the residus theorem give  ∫_R f(z)dz= 2iπ Res(f,i(√3))  but  Res(f,i(√3))= lim_(z−>i(√3)) (z −i(√3))f(z)= lim_(z−>i(√3))   (e^(iπz^2 ) /(z+i(√3)))  =  (e^(iπ(−3)) /(2i(√3)))=  (((−1)^(−3) )/(2i(√3)))= ((−1)/(2i(√3)))  ∫_(R ) f(z)dz= 2iπ.((−1)/(2i(√3)))  = ((−π)/(√3))      and   I= ((−π)/(2(√3)))  .

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:\:\:{due}\:{to}\:\left(−\mathrm{1}\right)={e}^{{i}\pi} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{{i}\pi{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{{R}} \:\:\frac{{e}^{{i}\pi{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:\:{let}\:{introduce}\:{the} \\ $$$${complex}\:{function}\:\:{f}\left({z}\right)=\:\frac{{e}^{{i}\pi{z}^{\mathrm{2}} } }{{z}^{\mathrm{2}} \:+\mathrm{3}}\:\:{we}\:{have} \\ $$$${f}\left({z}\right)=\:\frac{{e}^{{i}\pi{z}^{\mathrm{2}} } }{\left({z}\:−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\left.\mathrm{3}\right)}\right.}\:\:{the}\:{poles}\:{of}\:{f}\:{are}\:{z}_{\mathrm{1}} =\:{i}\sqrt{\mathrm{3}}\:{and} \\ $$$${z}_{\mathrm{2}} =−{i}\sqrt{\mathrm{3}}\:\:\:{the}\:{residus}\:{theorem}\:{give} \\ $$$$\int_{{R}} {f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\:{Res}\left({f},{i}\sqrt{\mathrm{3}}\right)\:\:{but} \\ $$$${Res}\left({f},{i}\sqrt{\mathrm{3}}\right)=\:{lim}_{{z}−>{i}\sqrt{\mathrm{3}}} \left({z}\:−{i}\sqrt{\mathrm{3}}\right){f}\left({z}\right)=\:{lim}_{{z}−>{i}\sqrt{\mathrm{3}}} \:\:\frac{{e}^{{i}\pi{z}^{\mathrm{2}} } }{{z}+{i}\sqrt{\mathrm{3}}} \\ $$$$=\:\:\frac{{e}^{{i}\pi\left(−\mathrm{3}\right)} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}=\:\:\frac{\left(−\mathrm{1}\right)^{−\mathrm{3}} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}=\:\frac{−\mathrm{1}}{\mathrm{2}{i}\sqrt{\mathrm{3}}} \\ $$$$\int_{{R}\:} {f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi.\frac{−\mathrm{1}}{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:\:=\:\frac{−\pi}{\sqrt{\mathrm{3}}}\:\:\:\:\:\:{and}\:\:\:{I}=\:\frac{−\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com