Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27684 by abdo imad last updated on 12/Jan/18

1) prove the existence of the integral  I=∫_0 ^(π/2)   ((ln(1+cosx))/(cosx))dx  2)prove that I= ∫∫_D   ((siny)/(1+cosx cosy))dxdy with   D=[0,(π/2)]^2   3)find the value of I.

1)provetheexistenceoftheintegralI=0π2ln(1+cosx)cosxdx2)provethatI=Dsiny1+cosxcosydxdywithD=[0,π2]23)findthevalueofI.

Commented by abdo imad last updated on 16/Jan/18

1) the convergence of I is easy lim_(x→(π/2))  ((ln(1+cosx))/(cosx))  = lim_(x→(π/2))    ((−sinx)/(−sinx(1+cosx)))= 1  (by hospital theorem  )  so the function is local integrable in [0,(π/2)[  2) I= ∫∫_(0≤x≤ (π/2) and 0≤y≤ (π/2))   ((siny)/(1+cosx cosy)) dx dy  I= ∫_0 ^(π/2) (  ∫_0 ^(π/2)     (1/(cosx))(  −( ((1+cosx cosy)^, )/(1+cosx cosy)))dy)dx  I= ∫_0 ^(π/2)    (1/(cosx)) [−ln/1+cosx cosy/]_(y=0) ^(y=(π/2)) ]dx  I=∫_0 ^(π/(2 ))     ((ln(1+cosx))/(cosx))dx  3) I=∫_0 ^(π/2)  (∫_0 ^(π/2)      (dx/(1+cosy cosx)))siny dy  but   J= ∫_0 ^(π/2)      (dx/(1+cosy cosx))= ∫_0 ^(π/2)    (dx/(1+λ cosx)) (λ=cosy)and the ch.  tan((x/2))=t  give  J= ∫_0^  ^1      (((2dt)/(1+t^2 ))/(1+λ((1−t^2 )/(1+t^2 ))))= ∫_0 ^1    ((2dt)/(1+t^2  +λ−λt^2 ))  = ∫_0 ^1     ((2dt)/((1−λ)t^2  +1+λ))= (2/(1−λ)) ∫_0 ^1      (dt/(t^2 +((√(((1+λ)/(1−λ)))))))2  = (2/(√(1−λ^2 ))) ∫_0 ^(√((1−λ)/(1+λ)))        (du/(1+u^2 ))      (ch.t=(√((1+λ)/(1−λ)))  u)  =(2/(√(1−λ^2 ))) artan( (√((1−λ)/(1+λ)))))= (2/(siny)) artan(tan((y/(2)))))= (y/(siny))  I= ∫_0 ^(π/2) (y/(siny)) sinydy= [(1/2) y^2 ]_0 ^(π/2) = (1/2) (π^2 /4)= (π^2 /8) .

1)theconvergenceofIiseasylimxπ2ln(1+cosx)cosx=limxπ2sinxsinx(1+cosx)=1(byhospitaltheorem)sothefunctionislocalintegrablein[0,π2[2)I=0xπ2and0yπ2siny1+cosxcosydxdyI=0π2(0π21cosx((1+cosxcosy),1+cosxcosy)dy)dxI=0π21cosx[ln/1+cosxcosy/]y=0y=π2]dxI=0π2ln(1+cosx)cosxdx3)I=0π2(0π2dx1+cosycosx)sinydybutJ=0π2dx1+cosycosx=0π2dx1+λcosx(λ=cosy)andthech.tan(x2)=tgiveJ=012dt1+t21+λ1t21+t2=012dt1+t2+λλt2=012dt(1λ)t2+1+λ=21λ01dtt2+(1+λ1λ)2=21λ201λ1+λdu1+u2(ch.t=1+λ1λu)=21λ2artan(1λ1+λ))=2sinyartan(tan(y2)))=ysinyI=0π2ysinysinydy=[12y2]0π2=12π24=π28.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com